Hostname: page-component-5c6d5d7d68-ckgrl Total loading time: 0 Render date: 2024-08-18T06:19:40.102Z Has data issue: false hasContentIssue false

On the evolution of massive close binaries

Published online by Cambridge University Press:  26 May 2016

Norbert Langer
Affiliation:
Sterrekundig Instituut, Universiteit Utrecht, Princetonplein 5, NL-3584 CC Utrecht, Nederland
Stephan Wellstein
Affiliation:
Lehrstuhl Astrophysik, Institut für Physik, Universität Potsdam, Am Neuen Palais 10, D-14414 Potsdam, BRD
Jelena Petrovic
Affiliation:
Sterrekundig Instituut, Universiteit Utrecht, Princetonplein 5, NL-3584 CC Utrecht, Nederland

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We discuss which fraction of the matter flowing to the companion during a Roche lobe overflow phase can actually be accreted by the secondary star. Employing new evolutionary models for massive close binaries which include the effects of rotation for both components as well as angular momentum accretion and spin-orbit coupling, we propose a physical model to calculate the accretion efficiency in Case A and B systems. We provide examples showing that both cases, high and low accretion efficiency, do occur within these models, as it seems required by observed post-mass transfer systems. Furthermore, we discuss late evolutionary stages of such binaries, with emphasis on the formation of compact objects: what are their spin rates, which systems can produce black holes, which gamma-ray bursts?

Type
Part 2. Interiors of Massive Stars
Copyright
Copyright © Astronomical Society of the Pacific 2003 

References

Bohannan, B., Conti, P.S. 1976, ApJ 204, 797.Google Scholar
Brown, G.E., Lee, C.-H., Bethe, H.A. 1999, New Astron. 4, 313.Google Scholar
Brown, G.E., Heger, A., Langer, N., et al. 2001, New Astron. 6, 457.Google Scholar
Clark, J.S., Goodwin, S.P., Crowther, P.A., Kaper, L., Fairbairn, M., Langer, N., Brocksopp, C. 2002, A&A 392, 909.Google Scholar
Heger, A., Langer, N. 2000, ApJ 544, 1016.Google Scholar
Heger, A., Langer, N., Woosley, S.E. 2000, ApJ 528, 368.Google Scholar
Kaper, L., Ruymaekers, E., van den Heuvel, E.P.J., et al. 1995, A&A 300, 446.Google Scholar
Langer, N. 1987, A&A (Letters) 171, L1.Google Scholar
Langer, N. 1997, in: Nota, A. & Lamers, H. (eds.), Luminous Blue Variables: Massive Stars in Transition, ASP-CS 120, 332.Google Scholar
Langer, N. 1998, A&A 329, 551.Google Scholar
Meynet, G., Maeder, A. 2000, A&A 361, 101.Google Scholar
Packet, W. 1981, A&A 102, 17.Google Scholar
Petrovic, J., Langer, N. 2003, these Proceedings.Google Scholar
Wellstein, S., Langer, N. 1999, A&A 350, 148.Google Scholar
Wellstein, S., Langer, N., Braun, H. 2001, A&A 369, 939.Google Scholar
Zahn, J.-P. 1977, A&A 57, 383.Google Scholar