Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-13T09:49:45.793Z Has data issue: false hasContentIssue false

Physical Modeling of the Zodiacal Dust Cloud

Published online by Cambridge University Press:  13 May 2016

Leonid M. Ozernoy*
Affiliation:
5C3, School of Computational Sciences and Department of Physics & Astronomy, George Mason U., Fairfax, VA 22030-4444, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This review is based on extensive work done in collaboration with N. Gorkavyi, J. Mather, and T. Taidakova, which aimed at physical modeling of the interplanetary dust (IPD) cloud in the Solar System, i.e., establishing a link between the observable characteristics of the zodiacal cloud and the dynamical and physical properties of the parent minor bodies. Our computational approach permits one to integrate the trajectories of hundreds of particles and to effectively store up to 1010–11 positions with modest computer resources, providing a high fidelity 3D distribution of the dust. Our numerical codes account for the major dynamical effects that govern the motion of IPD particles: Poynting-Robertson (P-R) drag and solar wind drag; solar radiation pressure; particle evaporation; gravitational scattering by the planets; and the influence of mean-motion resonances. The incorporation of secular resonances and collisions of dust particles (both mutual and with interstellar dust) is underway. We have demonstrated the efficacy of our codes by performing the following analyses: (i) simulation of the distribution of Centaurs (comets scattered in their journey from the Kuiper belt inward in the Solar System) and revealing the effects of the outer planets in producing ‘cometary belts’; (ii) detailed inspection of a rich resonant structure found in these belts, which predicts the existence of gaps similar to the Kirkwood gaps in the main asteroid belt; (iii) a preliminary 3-D physical model of the IPD cloud, which includes three dust components – asteroidal, cometary, and kuiperoidal – and is consistent with the available data of Pioneer and Voyager dust detectors; (iv) modeling of the IPD cloud, which provides a zodiacal light distribution in accord, to the order of 1%, with a subset of the COBE/DIRBE observations; and (v) showing that the resonant structure in dusty circumstellar disks of Vega and Epsilon Eridani is a signature of embedded extrasolar planets. Further improvements of our modeling and their importance for astronomy and cosmology are outlined.

Type
Research Article
Copyright
Copyright © Astronomical Society of the Pacific 2001 

References

Backman, D. E., Dasgupta, A., & Stencel, R. E. 1995, ApJ, 450, L35 CrossRefGoogle Scholar
Dermott, S. F. et al. 1994, Nature, 369, 719 Google Scholar
Dermott, S. F. et al. 1996, in ASP Conf. Ser. Vol. 104, Physics, Chemistry, and Dynamics of Interplanetary Dust, ed. Gustafson, B. & Hanner, M. (San Francisco: ASP), 143 Google Scholar
Divine, N. 1993, J. Geophys. Res., 98E, 17029 CrossRefGoogle Scholar
Flynn, G. J. 1994, Lunar & Planetary Science, XXV, 379 Google Scholar
Flynn, G. J. 1996, in ASP Conf. Ser. Vol. 104, Physics, Chemistry, and Dynamics of Interplanetary Dust, ed. Gustafson, B. & Hanner, M. (San Francisco: ASP), 171 Google Scholar
Gorkavyi, N. N., Ozernoy, L. M., & Mather, J. C. (≡ GOM) 1996, in ASP Conf. Ser. Vol. 104, Physics, Chemistry, and Dynamics of Interplanetary Dust, ed. Gustafson, B. & Hanner, M. (San Francisco: ASP), 43 Google Scholar
Gorkavyi, N. N., Ozernoy, L. M., & Mather, J. C. (≡ GOM) 1997, ApJ, 474, 496 Google Scholar
Gorkavyi, N. N., Ozernoy, L. M., Mather, J. C., & Taidakova, T. (≡ GOMT) 1997a, ApJ, 488, 268 CrossRefGoogle Scholar
Gorkavyi, N. N., Ozernoy, L. M., Mather, J. C., & Taidakova, T. 1997b, BAAS, 29, 782 Google Scholar
Gorkavyi, N. N., Ozernoy, L. M., Mather, J. C., & Taidakova, T. 1997c, BAAS, 29, 1310 Google Scholar
Gorkavyi, N. N. et al. (≡ GOMT) 1998a, Earth, Planets and Space, 50, 539 CrossRefGoogle Scholar
Gorkavyi, N. N., Ozernoy, L. M., Mather, J. C., & Taidakova, T., 1998b, BAAS, 30, 853 Google Scholar
Gorkavyi, N. N., Ozernoy, L. M., Mather, J. C., & Taidakova, T., 1998c, BAAS, 30, 1143 Google Scholar
Gorkavyi, N. N. et al. (≡ GOMT) 2000a, astro-ph/0006435; Planetary Space. Sci. (submitted).Google Scholar
Gorkavyi, N. et al. (≡ GOMT) 2000b, in ASP Conf. Ser. 207, The NGST Science and Technology Exposition, ed. Smith, E. P. & Long, K. S. (San Francisco: ASP), 462 Google Scholar
Gorkavyi, N., Ozernoy, L., Mather, J., & Heap, S. 2000c, in ASP Conf. Ser. (in press), Disks, Planetesimals, and Planets, ed. Garzon, F. et al. (San Francisco: ASP); WWW e-print astro-ph/0005347 Google Scholar
Gurnett, D. A. et al. 1997, Geophys. Res. Lett., 24, 3125 Google Scholar
Haug, U. 1958, Zeitschrift für Astrophysik, 44, 71 Google Scholar
Hauser, M. G. et al. 1998, ApJ, 508, 25 CrossRefGoogle Scholar
Heap, S. et al. 2000, ApJ, (in press).Google Scholar
Humes, D. H. 1980, J. Geophys. Res., 85, 5841 Google Scholar
Jackson, A. A., & Zook, H. A. 1989, Nature, 337, 629 CrossRefGoogle Scholar
Jewitt, D. 1999, Ann. Rev. Earth. Planet. Sci., 27, 287 CrossRefGoogle Scholar
Kelsall, T. et al. 1998, ApJ, 508, 44 CrossRefGoogle Scholar
Kessler, D. J. 1981, Icarus, 48, 39 Google Scholar
Leinert, L., Roser, S., & Buitrago, J. 1983, A&A, 118, 345 Google Scholar
Levison, H. F., & Duncan, M. J. 1997, Icarus, 127, 13 Google Scholar
Liou, J.-C., & Zook, H.A. 1999, AJ, 118, 580 Google Scholar
Liou, J.-C., Zook, H. A., & Dermott, S. F. 1996, in ASP Conf. Ser. Vol. 104, Physics, Chemistry, and Dynamics of Interplanetary Dust, ed. Gustafson, B. & Hanner, M. (San Francisco: ASP), 429.Google Scholar
Malhotra, R., Duncan, M., & Levison, H. 1999, in Protostars and Planets IV (in press); astro-ph/9901155 Google Scholar
Mather, J. C., & Beichman, C. A. 1996, in AIP Conf. Proc. 348, Unveiling the Cosmic Infrared Background, ed. Dwek, E. (Woodbury: AIP Press), 271 Google Scholar
Ozernoy, L. M., Gorkavyi, N. N., & Taidakova, T. 2000a, Planetary Space Science, 48, 993 Google Scholar
Ozernoy, L. M., Gorkavyi, N. N., & Taidakova, T. (≡ OGT) 2000b, MNRAS, submitted; an early version posted in astro-ph/9812479 Google Scholar
Ozernoy, L. M. et al. (≡ OGMT), 2000c, ApJ, 537, L147 CrossRefGoogle Scholar
Stern, A. 2000, in ASP Conf. Ser., Highlights of Astronomy, JD 4, ed. Lemaitre, A. & Rickman, H. (San Francisco: ASP) (in press).Google Scholar
Taidakova, T. 1997, in ASP Conf. Ser. 125, Astronomical Data Analyses, Software and Systems VI, ed. Hunt, G. & Payne, H. E., (San Francisco: ASP), 174 Google Scholar
Taidakova, T., & Gorkavyi, N. N. 1999, The Dynamics of Small Bodies in the Solar Systems: A Major Key to Solar Systems Studies, ed. Steves, B. A. & Roy, B. A. (Kluwer Academic Publishers), 393 Google Scholar
Valsecchi, G. B., & Manara, A. 1997, A&A, 323, 986 Google Scholar