Hostname: page-component-5c6d5d7d68-xq9c7 Total loading time: 0 Render date: 2024-08-09T18:35:28.123Z Has data issue: false hasContentIssue false

Recent Advances in the studies of Reaction Rates relevant to Interstellar Chemistry

Published online by Cambridge University Press:  04 August 2017

Nigel G. Adams
Affiliation:
Department of Space Research, University of Birmingham, Birmingham B15 2TT England
David Smith
Affiliation:
Department of Space Research, University of Birmingham, Birmingham B15 2TT England

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The current status of laboratory measurements of the rate coefficients for ionic reactions involved in interstellar molecular synthesis is discussed and the experimental techniques used to acquire such data are briefly described. Examples are given of laboratory data which are being obtained at temperatures close to those of interstellar clouds. Particular attention is given to the results of recent theoretical and experimental work which show that the rate coefficients for the binary reactions of ions with polar molecules at low temperatures are much larger than previously assumed. It is shown how these new developments in experiment and theory are reconciling the differences between predicted and observed abundances for some interstellar molecules. Also briefly discussed are: - the phenomenon of isotope exchange in ion/neutral reactions which explains the apparent enrichment of heavy isotopes in some interstellar molecules, the role of atoms in molecular synthesis, some studies of ion/neutral reactions pertaining to shocked regions of interstellar clouds, ternary association reactions and the analogous radiative association reactions, and recent new laboratory measurements of dissociative recombination coefficients. Finally, some guidance is offered in the proper choice of critical kinetic data for use in interstellar chemical modelling and some further requirements and likely future developments are mentioned.

Type
Basic Studies
Copyright
Copyright © Reidel 1987 

References

Adams, N. G., and Smith, D. 1981, Chem. Phys. Letters, 79, 563.Google Scholar
Adams, N. G., and Smith, D. 1983, in Reactions of Small Transient Species: Kinetics and Energetics, eds. Fontijn, A. and Clyne, M. A. A. (New York: Academic Press), p. 311.Google Scholar
Adams, N. G., and Smith, D. 1984a, Chem. Phys. Letters, 105, 604.Google Scholar
Adams, N. G., and Smith, D. 1984b, Int. J. Mass Spectrom. Ion Proc., 61, 133.CrossRefGoogle Scholar
Adams, N. G., and Smith, D. 1985a, Chem. Phys. Letters, 117, 67.CrossRefGoogle Scholar
Adams, N. G., and Smith, D. 1985b, Ap. J. (Letters), 294, L63.CrossRefGoogle Scholar
Adams, N. G., Smith, D., and Millar, T. J. 1984a, M. N. R. A. S., 211, 857.CrossRefGoogle Scholar
Adams, N. G., Smith, D., and Alge, E. 1984b, J. Chem. Phys., 81, 1778.Google Scholar
Adams, N. G., Smith, D., and Ferguson, E. E. 1985a, Int. J. Mass Spectrom. Ion. Proc., 67, 67.Google Scholar
Adams, N. G., Smith, D., and Clary, D. C. 1985b, Ap. J. (Letters), 296, L31.Google Scholar
Adams, N. G., Smith, D., Lindinger, W., Villinger, H. and Millar, T. J. 1986, in preparation.Google Scholar
Alge, E., Adams, N. G., and Smith, D. 1983, J. Phys. B, 16, 1433.Google Scholar
Albritton, D. L. 1978, Atom. Data Nucl. Data Tables, 22, 1.Google Scholar
Bardsley, J. N., and Biondi, M. A. 1970, Adv. Atom. Mol. Phys., 6, 1.Google Scholar
Barlow, S. E., Dunn, G. H., and Schauer, M. 1984, Phys. Rev. Letters, 52, 902 Google Scholar
Bates, D. R. 1986, in Fundamental Processes in Atomic Collision Physics, ed. Kleinpoppen, H., (New York: Plenum Press), in press.Google Scholar
Biondi, M. A. 1973, Comments Atom. Molec. Phys., 4, 85.Google Scholar
Clary, D. C. 1985, Mol. Phys., 54, 605.Google Scholar
Clary, D. C., Smith, D., and Adams, N. G. 1985, Chem. Phys. Letters, 119, 320.Google Scholar
Dalgarno, A. 1985, in Molecular Astrophysics, ed. Diercksen, G. H. F. et al., (Dordrecht: Reidel), p. 281.Google Scholar
Dalgarno, A., and Black, J. H. 1976, Rept. Prog. Phys., 39, 573.CrossRefGoogle Scholar
Dalgarno, A., and Lepp, S. 1984, Ap. J. (Letters), 287, L47.Google Scholar
Draine, B. T., and Katz, N. S. 1986, Ap. J., submitted.Google Scholar
Draine, B. T. 1985, in Molecular Astrophysics, ed. Diercksen, G. H. F. et al., (Dordrecht: Reidel), p. 295.Google Scholar
Federer, W., Villinger, H., Tosi, P., Bassi, D., Ferguson, E. E., and Lindinger, W. 1985, in Molecular Astrophysics, ed. Diercksen, G. H. F. et al. (Dordrecht: Reidel), p. 649.Google Scholar
Ferguson, E. E., Fehsenfeld, F. C., and Schmeltekopf, A. L. 1969, Adv. Atom. Mol. Phys., 5, 1.Google Scholar
Ferguson, E. E., Smith, D., and Adams, N. G. 1984, J. Chem. Phys., 81, 742.Google Scholar
Gioumousis, G., and Stevenson, D. P. 1958, J. Chem. Phys., 29, 294.Google Scholar
Graedel, T. E., Langer, W. D., and Frerking, M. A. 1982, Ap. J. Suppl., 48, 321.CrossRefGoogle Scholar
Hartquist, T. W., Black, J. H., and Dalgarno, A. 1978, M. N. R. A. S., 185, 643.Google Scholar
Herbst, E. 1983, Ap. J. Suppl., 53, 41.Google Scholar
Herbst, E., and Klemperer, W. 1976, in Physics of Electronic and Atomic Collisions, ed. Risley, J. S. and Geballe, R. (Seattle: Univ. of Washington Press), p. 62.Google Scholar
Herbst, E., Adams, N. G., and Smith, D. 1983, Ap. J., 269, 329.CrossRefGoogle Scholar
Herbst, E., Adams, N. G., and Smith, D. 1984, Ap. J., 285, 618.Google Scholar
Huntress, W. T. Jr. 1977, Ap. J. Suppl., 33, 495.Google Scholar
Knight, J. S., Freeman, C. G., McEwan, M. J., Smith, S. C., Adams, N. G., and Smith, D. 1986, M. N. R. A. S., in press.Google Scholar
Leu, M. T., Biondi, M. A., and Johnsen, R. 1973, Phys. Rev., A8, 413.CrossRefGoogle Scholar
Leung, C. M., Herbst, E., and Huebner, W. F. 1984, Ap. J. Suppl., 56, 231.Google Scholar
Luine, J. A., and Dunn, G. H. 1981, 12th Int. Conf. on Physics of Electronic and Atomic Collisions, Gatlinburg, Tennessee, July 1981, p. 1035.Google Scholar
Marquette, J. B., Rowe, B. R., Dupeyrat, G., and Roueff, E. 1985a, Astron. Astrophysics., 147, 115.Google Scholar
Marquette, J. B., Rowe, B. R., Dupeyrat, G., Poissant, G., and Rebrion, C. 1985b, Chem. Phys. Letters, 122, 431.Google Scholar
Matthews, H., and Irvine, W. M. 1985, preprint.Google Scholar
Mclver, R. J. Jr. 1978, Rev. Sci. Instrum., 49, 111.Google Scholar
Meot-ner, M. 1979, in Gas Phase Ion Chemistry, Vol. 1, ed. Bowers, M. T. (New York: Academic Press), p. 198.Google Scholar
Michels, H. H., and Hobbs, R. H. 1984, Ap. J. (Letters), 286, L27.Google Scholar
Millar, T. J. 1985, in Molecular Astrophysics, ed. Diercksen, G. H. F. et al., (Dordrecht, Reidel), 613.Google Scholar
Millar, T. J., Adams, N. G., Smith, D., and Clary, D. C. 1985, M. N. R. A. S., 216, 1025.Google Scholar
Mitchell, J. B. A., and McGowan, J. W. 1983, in Physics of Ion-Ion and Electron-Ion Collisions, ed. Brouillard, F. and McGowan, J. W. (New York: Plenum Press), p. 279.Google Scholar
Prasad, S. S., and Huntress, W. T. Jr. 1980, Ap. J., 239, 151.Google Scholar
Rowe, B. R., Dupeyrat, G., Marquette, J. B., Smith, D., Adams, N. G., and Ferguson, E. E. 1984a, J. Chem. Phys., 80, 241.Google Scholar
Rowe, B. R., Dupeyrat, G., Marquette, J. B., and Gaucherel, P. 1984b, J. Chem. Phys., 80, 4915.CrossRefGoogle Scholar
Rowe, B. R., Marquette, J. B., Dupeyrat, G., and Ferguson, E. E. 1985, Chem. Phys. Letters, 113, 403.CrossRefGoogle Scholar
Smith, D., and Adams, N. G. 1977, Ap. J. 217, 741.Google Scholar
Smith, D., and Adams, N. G. 1978a, Ap. J. (Letters), 220, L87.Google Scholar
Smith, D., and Adams, N. G. 1978b, in Kinetics of Ion-Molecule Reactions. ed. Ausloos, P. (New York: Plenum Press), p. 345.Google Scholar
Smith, D., and Adams, N. G. 1979, in Gas Phase Ion Chemistry, Vol. 1, ed. Bowers, M. T. (New York: Academic Press) p. 1.Google Scholar
Smith, D., and Adams, N. G. 1980, Ap. J., 242, 424.CrossRefGoogle Scholar
Smith, D., and Adams, N. G. 1981, Int. Rev. Phys. Chem., 1, 271.Google Scholar
Smith, D., and Adams, N. G. 1983, in Physics of Ion-Ion and Electron-Ion Interactions, ed. Brouillard, F. and McGowan, W. M. (New York: Plenum Press), p. 501.CrossRefGoogle Scholar
Smith, D., and Adams, N. G. 1984a, in Ionic Processes in the Gas Phase, ed. Almoster-Ferreira, M. A. (Dordrecht: Reidel), p. 41.Google Scholar
Smith, D., and Adams, N. G. 1984b, in Swarms of Ions and Electrons in the Gas Phase, ed. Lindinger, W., Mark, T. D. and Howorka, F. (Vienna: Springer-Verlag), p. 284.Google Scholar
Smith, D., and Adams, N. G. 1984c, Ap. J. (Letters), 284, L13.Google Scholar
Smith, D., and Adams, N. G. 1985a, in Molecular Astrophysics, ed. Diercksen, G. H. F. et al. (Dordrecht: Reidel), p. 453.Google Scholar
Smith, D., and Adams, N. G. 1985b, J. Phys. Chem., 89, 3964.Google Scholar
Smith, D., and Adams, N. G., 1985c, Ap. J., 298, in press.Google Scholar
Smith, D., Adams, N. G., and Alge, E. 1982, Ap. J., 263, 123.CrossRefGoogle Scholar
Smith, D., Adams, N. G., and Alge, E. 1984, Chem. Phys. Letters, 105, 317.Google Scholar
Su, T., and Bowers, M. T. 1973, Int. J. Mass Spectrom Ion Phys., 12, 347.Google Scholar
Su, T., and Bowers, M. T. 1979, in Gas Phase Ion Chemistry, Vol. 1, ed. Bowers, M. T. (New York: Academic Press), p. 83.Google Scholar
Walls, F. L., and Dunn, G. H. 1974, J. Geophys. Res., 79, 1911.Google Scholar
Watson, W. D. 1976, Rev. Mod. Phys., 48, 513.Google Scholar
Ziurys, L., and Turner, B. E. 1986, Ap. J. (Letters), in press.Google Scholar