Hostname: page-component-5c6d5d7d68-xq9c7 Total loading time: 0 Render date: 2024-08-09T14:08:38.325Z Has data issue: false hasContentIssue false

Twin, Aligned Protoplanetary Disks around the Components of the Young Binary System L1551 IRS5

Published online by Cambridge University Press:  13 May 2016

Jose M. Torrelles
Affiliation:
Institut d'Estudis Espacials de Catalunya (IEEC/CSIC) and Instituto de Ciencias del Espacio (CSIC), Gran Capita 2, 08034 Barcelona, Spain
Luis F. Rodríguez
Affiliation:
Instituto de Astronomía, UNAM, Apdo. Postal 72–3 (Xangari), 58089 Morelia, Mexico
Guillem Anglada
Affiliation:
Instituto de Astrofísica de Andalucía (CSIC), Apdo. Correos 3004, 18080 Granada, Spain

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

VLA 7 mm continuum observations carried out by Rodríguez et al. (1998) with 0.06″ resolution toward L1551 IRS5 have shown two resolved dust sources. Both sources are elongated with almost the same orientation, similar flux densities, and similar angular sizes, being interpreted by these authors as a system of twin, aligned protoplanetary disks of 10 AU radius around the components of a young binary of 50 AU separation. These protoplanetary disks, the smaller ones ever imaged at mm wavelengths, are about a factor of ten smaller than disks around isolated stars, but have enough mass to form solar systems similar to our own. The fact that the disks are aligned with each other argues in favor for long-lived planetary systems in this binary. We all look forward to the future development of interferometers such as the EVLA, SMA, and ALMA in order to characterize the physical conditions of these associated protoplanetary disks by detecting spatially resolved molecular line emission. With these upcoming interferometers it will be possible to make great strides forward in our knowledge of the star formation processes.

Type
IV. Initial Conditions for Binary Formation and Protobinary Systems
Copyright
Copyright © Astronomical Society of the Pacific 2001 

References

Anglada, G., Rodríguez, L. F., & Torrelles, J. M. 2000, submitted to ApJ.Google Scholar
Bieging, J. H., & Cohen, M. 1985, ApJ, 289, L5.Google Scholar
Fridlund, C. V. M., & Liseau, R. 1998, ApJ, 499, L75.Google Scholar
Girart, J. M., Rodríguez, L. F., & Curiel, S. 2000, submitted to ApJ.Google Scholar
Hartigan, P., Morse, J., Palunas, P., Bally, J., Devine, D. 2000, AJ, 119, 1872.Google Scholar
Itoh, Y. et al. 2000, PASJ, 52, 81.Google Scholar
Jensen, E. L., Donar, A. X., & Mathieu, R. D. 2000, in Poster Proceedings of IAU Symposium 200, ed. Reipurth, Bo & Zinnecker, Hans, 85.Google Scholar
Looney, L. W., Mundy, L. G., & Welch, W. J. 1997, ApJ, 484, L157.CrossRefGoogle Scholar
Rodríguez, L. F., Cantó, J., Torrelles, J. M., & Ho, P. T. P. 1986, ApJ, 301, L25.Google Scholar
Rodríguez, L. F. et al. 1998, Nature, 395, 355.Google Scholar
Rodríguez, L. F., Ho, P. T. P., & Moran, J. M. 1980, ApJ, 240, L149.CrossRefGoogle Scholar
Snell, R. L., Loren, R. B., & Plambeck, R. L. 1980, ApJ, 239, L17.CrossRefGoogle Scholar
Strom, K. M., Strom, S. E., & Vrba, F. J. 1976, AJ, 81, 320.CrossRefGoogle Scholar
Torrelles, J. M. et al. 1983, ApJ, 274, 214.CrossRefGoogle Scholar
Torrelles, J. M. et al. 1998, ApJ, 505, 756.CrossRefGoogle Scholar