Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-01T21:29:38.803Z Has data issue: false hasContentIssue false

Depression as a Consequence of Inadequate Neurochemical Adaptation in Response to Stressors

Published online by Cambridge University Press:  06 August 2018

Hymie Anisman
Affiliation:
Department of Psychology, Unit for Behavioral Medicine and Pharmacology, Carleton University, Ottawa, Ontario K1S 5B6, Canada
Robert M. Zacharko
Affiliation:
Department of Psychology, Unit for Behavioral Medicine and Pharmacology, Carleton University, Ottawa, Ontario K1S 5B6, Canada

Extract

Stressors induce behavioural disturbances and neurochemical changes in animals, some of which are reminiscent of the symptoms and presumed neurochemical concomitants of depression in humans. Just as in humans, where considerable inter-individual variability is evident in the symptom profile of depression, there is marked inter-individual and inter-strain variability in the behavioural effects of stressors in animals. It is proposed that stressors induce adaptive neurochemical changes, failure of which may engender behavioural disturbances. Variability in the symptoms of depression and in the efficacy of its pharmacological treatment may reflect the biochemical heterogeneity of the illness. Inter-individual differences in vulnerability to stressor-provoked neurochemical changes may contribute to the behavioural profiles observed.

Type
Research Article
Copyright
Copyright © The Royal College of Psychiatrists 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abercrombie, E. D., Wilkinson, L. O. & Jacobs, B. L. (1986) Environmental stress and activity of locus coeruleus noradrenergic neurons in freely moving cats. Society for Neuroscience Abstracts, 12, 1134.Google Scholar
Abercrombie, E. D. & Jacobs, B. L. (1988) Systemic naloxone administration potentiates locus coeruleus noradrenergic neuronal activity under stressful but non-stressful conditions. Brain Research, 441, 362366.CrossRefGoogle ScholarPubMed
Abercrombie, E. D., Levine, E. S. & Jacobs, B. L. (1988) Microinjected morphine suppresses the activity of locus coeruleus noradrenergic neurons in freely moving cats. Neuroscience Letters, 86, 334339.CrossRefGoogle ScholarPubMed
Abercrombie, E. D., Keefe, K. A., DiFrischia, D. S., et al (1989) Differential effect of stress on in vivo dopamine release in striatum, nucleus accumbens and medial frontal cortex. Journal of Neurochemistry, 52, 16551658.CrossRefGoogle ScholarPubMed
Adell, A., Garcia-Marquez, C., Armario, A., et al (1988) Chronic stress increases serotonin and noradrenaline in rat brain and sensitizes their responses to a further acute stress. Journal of Neurochemistry, 50, 16781681.CrossRefGoogle ScholarPubMed
Anisman, H., deCantanzaro, D. & Remington, G. (1978) Escape performance following exposure to inescapable shock: deficits in motor response maintenance. Journal of Experimental Psychology: Animal Behavior Processes, 4, 197218.Google Scholar
Anisman, H. & Sklar, L. S. (1979) Catecholamine depletion upon reexposure to stress: mediation of the escape deficits produced by inescapable shock. Journal of Comparative and Physiological Psychology, 93, 610625.CrossRefGoogle ScholarPubMed
Anisman, H., Remington, G. & Sklar, L. S. (1979) Effects of inescapable shock on subsequent escape performance: catecholaminergic and cholinergic mediation of response initiation and maintenance. Psychopharmacology, 61, 107124.CrossRefGoogle ScholarPubMed
Anisman, H., Pizzino, A. & Sklar, L. S. (1980) Coping with stress, norepinephrine depletion and escape performance. Brain Research, 191, 583588.CrossRefGoogle ScholarPubMed
Anisman, H., Glazier, S. J. & Sklar, L. S. (1981) Cholinergic influences on escape deficits produced by uncontrollable stress. Psychopharmacology, 74, 8187.CrossRefGoogle ScholarPubMed
Anisman, H., Hamilton, M. & Zacharko, R. M. (1984) Cue and response choice acquisition and reversal after exposure to uncontrollable shock: Induction of response perseveration. Journal of Experimental Psychology: Animal Behavior Processes, 10, 229243.Google Scholar
Anisman, H., Irwin, J., Bowers, W., et al (1986) Variations of norepinephrine concentrations following chronic stressor application. Pharmacology, Biochemistry & Behavior, 26, 653659.CrossRefGoogle Scholar
Anisman, H. & Zacharko, R. M. (1986) Behavioral and neurochemical consequences associated with stressors. Annals of the New York Academy of Sciences, 467, 205225.CrossRefGoogle ScholarPubMed
Anisman, H. & Zacharko, R. M. (1990) Multiple neurochemical and behavioral consequences of stressors: Implications for depression. Pharmacology & Therapeutics, 46, 119136.CrossRefGoogle ScholarPubMed
Aston-Jones, G. & Bloom, F. E. (1981) Norepinephrine-containing locus coeruleus neurons in behaving rats exhibit pronounced responses to non-noxious environmental stimuli. Journal of Neuroscience, 1, 887900.CrossRefGoogle ScholarPubMed
Aston-Jones, G., Foote, S. L. & Bloom, F. E. (1984) Anatomy and physiology of locus coeruleus neurons: functional implications. In Norepinephrine: Clinical Aspects (eds Ziegler, M. G. & Lake, C. R.). Baltimore: Williams and Wilkins.Google Scholar
Bannon, M. J., Elliott, P. J., Alpert, J. E., et al (1983) Role of endogenous substance P in stress-induced activation of mesocortical dopamine neurones. Nature, 306, 791792.CrossRefGoogle ScholarPubMed
Boadle-Biber, M. C., Corley, K. C., Graves, L., et al (1989) Increasing activity of tryptophan hydroxylase from cortex and midbrain of male Fischer 344 rats in response to acute and repeated sound stress. Brain Research, 482, 306316.CrossRefGoogle ScholarPubMed
Blanc, G., Herve, D., Simon, H., et al (1980) Response to stress of mesocortical-frontal dopaminergic neurons in rats after long-term isolation. Nature, 284, 265267.CrossRefGoogle Scholar
Bolles, R. C. (1970) Species-specific defense reactions and avoidance learning. Psychological Review, 77, 3248.CrossRefGoogle Scholar
Bowers, W. J., Zacharko, R. M. & Anisman, H. (1987) Evaluation of stressor effects on intracranial self-stimulation from the nucleus accumbens and the substantia nigra in a current intensity paradigm. Behavioral Brain Research, 23, 8593.CrossRefGoogle Scholar
Cassens, G., Roffman, M., Kuruc, A., et al (1980) Alterations in brain norepinephrine metabolism induced by environmental stimuli previously paired with inescapable shock. Science, 209, 11381140.CrossRefGoogle ScholarPubMed
Chiodo, L. A., Bannon, M. J., Grace, A. A., et al (1984) Evidence for the absence of impulse regulating somatodendritic and synthesis-modulating nerve terminal autoreceptors on subpopulations of mesocortical dopamine neurons. Neuroscience, 12, 116.CrossRefGoogle ScholarPubMed
Deutch, A. Y., Tam, S-Y. & Roth, R. H. (1985) Footshock and conditioned stress increase 3,4-dihydroxyphenylacetic acid (DOPAC) in the ventral tegmental area but not substantia nigra. Brain Research, 333, 143146.CrossRefGoogle Scholar
Dunn, A. J. (1988) Changes in plasma and brain tryptophan and brain serotonin and 5-hydroxyindoleacetic acid after footshock stress. Life Sciences, 42, 18471853.CrossRefGoogle ScholarPubMed
Dunn, A. J. & File, S. A. (1983) Cold restraint alters dopamine metabolism in frontal cortex, nucleus accumbens and striatum. Physiology & Behavior, 31, 511513.CrossRefGoogle Scholar
Fadda, F., Argiolas, A., Melis, M. R., et al (1978) Stress induced increase in 3,4-dihydroxyphenylacetic acid (DOPAC) levels in the cerebral cortex and in nucleus accumbens: reversal by diazepam. Life Sciences, 23, 22192224.CrossRefGoogle ScholarPubMed
Glazer, H. & Weiss, J. M. (1976) Long-term and transitory interference effects. Journal of Experimental Psychology: Animal Behavior Processes, 2, 191201.Google Scholar
Hamilton, M. E., Zacharko, R. M. & Anisman, H. (1986) Influence of p-chloroamphetamine and methysergide on the escape deficits provoked by inescapable shock. Psychopharmacology, 90, 203206.CrossRefGoogle ScholarPubMed
Hellhammer, D. H., Hingtgen, J. N., Wade, S. E., et al (1983) Serotonergic changes in specific areas of rat brain associated activity-stress gastric lesions. Psychosomatic Medicine, 45, 115122.CrossRefGoogle ScholarPubMed
Herman, J. P., Guillonneau, D., Dantzer, R., et al (1982) Differential effects of inescapable footshock and stimuli previously paired with inescapable footshocks on dopamine turnover in cortical and limbic areas of the rat. Life Sciences, 30, 22072214.CrossRefGoogle ScholarPubMed
Herman, J. P., Stinus, L. & Le Moal, M. (1984) Repeated stress increases locomotor response to amphetamine. Psychopharmacology, 84, 431435.CrossRefGoogle ScholarPubMed
Hoffman, I. S., Talmaciu, R. K., Ferro, C. P., et al (1988) Sustained high release at rapid stimulation rates and reduced functional autoreceptors characterize prefrontal dopamine terminals. Journal of Pharmacology and Experimental Therapeutics, 245, 761772.Google Scholar
Ida, Y., Tanaka, M., Kohno, Y., et al (1982) Effects of age and stress on regional noradrenaline metabolism in the rat brain. Neurobiology of Aging, 3, 233236.CrossRefGoogle ScholarPubMed
Irwin, J., Ahluwalia, P. & Anisman, H. (1986) Sensitization of norepinephrine activity following acute and chronic footshock. Brain Research, 376, 98103.CrossRefGoogle Scholar
Joseph, M. H. & Kennett, G. A. (1983) Stress-induced release of 5-HT in the hippocampus and its dependence on increased tryptophan availability: an in vivo electrochemical study. Brain Research, 270, 251257.CrossRefGoogle ScholarPubMed
Kasian, M., Zacharko, R. M. & Anisman, H. (1987) Regional variations in stressor provoked alterations of intracranial self-stimulation from the ventral tegmental area. Society for Neuroscience Abstracts, 13, 1551.Google Scholar
Kennett, G. A. & Joseph, M. H. (1981) The functional importance of increased brain tryptophan in the serotonergic response to restraint stress. Neuropharmacology, 20, 3943.CrossRefGoogle ScholarPubMed
Kvetnansky, R., Mitro, A., Palkovits, M., et al (1976) Catecholamines in individual hypothalamic nuclei in stressed rats. In Catecholamines and Stress (eds Usdin, E., Kvetnansky, R. & Kopin, I. J.). Oxford: Pergamon Press.Google Scholar
Lisoprawski, A., Blanc, G. & Glowinski, J. (1981) Activation by stress of the habenulo-interpeduncular substance P neurons in the rat. Neuroscience Letters, 25, 4751.CrossRefGoogle ScholarPubMed
Lynch, M. L., Littleton, J., McKernan, R. M., et al (1983) Adrenoceptor number and function in rat cortex after ethanol and immobilization stress. Brain Research, 288, 145149.CrossRefGoogle ScholarPubMed
Maier, S. F. & Seligman, M. E. P. (1976) Learned helplessness: theory and evidence. Journal of Experimental Psychology: General, 105, 346.CrossRefGoogle Scholar
Molina, V. A., Volosin, M., Keller, C. E., et al (1990) Effect of chronic variable stress on monoamine receptors: influence of imipramine administration. Pharmacology, Biochemistry & Behavior, 35, 335340.CrossRefGoogle ScholarPubMed
Oades, R. D. & Halliday, G. M. (1987) Ventral tegmental (A10) system: neurobiology 1. Anatomy and connectivity. Brain Research Review, 12, 117165.CrossRefGoogle Scholar
Prince, C. R. & Anisman, H. (1984) Acute and chronic stress effects on performance in a forced-swim task. Behavioral Neural Biology, 84, 99119.CrossRefGoogle Scholar
Prince, C. R., Collins, C. & Anisman, H. (1986) Stressor-provoked response patterns in a swim task: modification by diazepam. Pharmacology, Biochemistry & Behavior, 24, 323328.CrossRefGoogle Scholar
Rasmussen, K. & Jacobs, B. L. (1986) Single unit activity of locus coeruleus neurons in the freely moving cat. II. Conditioning and pharmacologic studies. Brain Reseach, 381, 335344.CrossRefGoogle Scholar
Redmond, D. E. & Huang, Y. H. (1979) New evidence for a locus coeruleus–norepinephrine connection with anxiety. Life Sciences, 25, 21492162.CrossRefGoogle ScholarPubMed
Ritter, S. & Pelzer, N. L. (1978) Magnitude of stress-induced norepinephrine depletion varies with age. Brain Research, 152, 170175.CrossRefGoogle ScholarPubMed
Roth, K. A., Mefford, I. M. & Barchas, J. D. (1982) Epinephrine, norepinephrine, dopamine and serotonin: differential effects of acute and chronic stress on regional brain amines. Brain Research, 239, 417424.CrossRefGoogle ScholarPubMed
Roth, T. H., Tam, S-Y., Ida, Y., et al (1988) Stress and the mesocortical systems. Annals of the New York Academy of Sciences, 537, 138147.CrossRefGoogle Scholar
Shanks, N., Zalcman, S. & Anisman, H. (1988) Strain-specific catecholamine variations induced by stressors: relation to behavioral change. Society for Neuroscience Abstracts, 18, 969.Google Scholar
Shanks, N. & Anisman, H. (1989) Strain-specific effects of antidepressants on escape deficits induced by inescapable shock. Psychopharmacology, 99, 122128.CrossRefGoogle ScholarPubMed
Sherman, A. D. & Petty, F. (1980) Neurochemical basis of the action of antidepressants on learned helplessness. Behavioral Neural Biology, 30, 119134.CrossRefGoogle ScholarPubMed
Stone, E. A. (1983) Problems with current catecholamine hypotheses of antidepressant agents. Behavioral Brain Sciences, 6, 535577.CrossRefGoogle Scholar
Stone, E. A. (1987) Central cyclic-AMP-linked noradrenergic receptors: New findings on properties as related to the actions of stress. Neuroscience and Biobehavioral Reviews, 11, 391398.CrossRefGoogle Scholar
Stone, E. A., Platt, J. E., Trullas, R., et al (1984) Reduction of the cAMP response to norepinephrine in rat cerebral cortex following repeated restraint stress. Psychopharmacology, 82, 403405.CrossRefGoogle ScholarPubMed
Stone, E. A., Platt, J. E., Herrera, A. S., et al (1986) The effect of repeated restraint stress, desmethylimipramine or adrenocorticotropin on the alpha and beta adrenergic components of the cyclic AMP response to norepinephrine in rat brain slices. Journal of Pharmacological and Experimental Therapeutics, 237, 702707.Google ScholarPubMed
Sulser, F. (1982) Antidepressant drug research; its impact on neurobiology and psychobiology. In Typical and Atypical Antidepressants: Molecular Mechanisms (eds Costa, E. & Racagni, G.). New York: Raven Press.Google Scholar
Szostak, C. & Anisman, H. (1985) Stimulus perseveration in a water maze following exposure to uncontrollable shock. Behavioral Neural Biology, 43, 178198.CrossRefGoogle Scholar
Tanaka, M., Kohno, Y., Nakagawa, R., et al (1982) Time-related differences in noradrenaline turnover in rat brain regions by stress. Pharmacology, Biochemistry & Behavior, 16, 315319.CrossRefGoogle ScholarPubMed
Thase, M. E., Frank, E. & Kupfer, D. J. (1985) Biological processes in major depression. In Handbook of Depression (eds Beckham, E. E. & Leber, W. R.). Homewood: Dorsey Press.Google Scholar
Thierry, A. M., Javoy, F., Glowinski, J., et al (1968) Effects of stress on the metabolism of norepinephrine, dopamine and serotonin in the central nervous system of the rat. Journal of Pharmacological and Experimental Therapeutics, 163, 163171.Google Scholar
Thierry, A. M., Tassin, J. P., Blanc, G., et al (1976) Selective activation of the mesocortical DA system by stress. Nature, 263, 242244.CrossRefGoogle ScholarPubMed
Thierry, A. M., Mantz, J., Milla, C., et al (1988) Influence of the mesocortical/prefrontal neurons on their target cells. Annals of the New York Academy of Sciences, 537, 101111.CrossRefGoogle ScholarPubMed
Torda, T., Yamaguchi, I., Hirata, F., et al (1981) Mepacrine treatment prevents immobilization-induced desensitization of beta-adrenergic receptors in rat hypothalamus and brain stem. Brain Research, 205, 441444.CrossRefGoogle ScholarPubMed
Tsuda, A. & Tanaka, M. (1985) Differential changes in noradrenaline turnover in specific region of rat brain produced by controllable and uncontrollable shocks. Behavioral Neuroscience, 99, 802817.CrossRefGoogle ScholarPubMed
U'Pritchard, D. C. & Kvetnansky, R. (1980) Central and peripheral adrenergic receptors in acute and repeated immobilization stress. In Second International Symposium in Catecholamines and Stress (eds Usdin, E., Kvetnansky, R. & Kopin, I. J.). New York: Elsevier.Google Scholar
Weiss, J. M., Glazer, H. I. & Pohorecky, L. A. (1976) Coping behavior and neurochemical changes: an alternative explanation for the original “learned helplessness’ experiments. In Animal Models in Human Psychobiology (eds Serban, G. & Kling, A.). New York: Plenum Press.Google Scholar
Weiss, J. M., Goodman, P. A., Losito, B. G., et al (1981) Behavioral depression produced by an uncontrollable stressor: relationship to norepinephrine, dopamine and serotonin levels in various regions of rat brain. Brain Research Reviews, 3, 167205.CrossRefGoogle Scholar
Weiss, J. M., & Goodman, P. A. (1984) Neurochemical mechanisms underlying stress-induced depression. In Stress and Coping (eds Field, T., McCabe, P. & Schneiderman, N.). New Jersey: Lawrence Erlbaum.Google Scholar
Weiss, J. M. & Simson, P. E. (1989) Electrophysiology of the locus coeruleus: implications for stress-induced depression. In Animal Models of Depression (eds Koob, G. F., Ehlers, C. L. & Kupfer, D. J.). Boston: Birkhauser.Google Scholar
Wolf, M. E., Galloway, M. P. & Roth, R. H. (1986) Regulation of dopamine synthesis in the medial prefrontal cortex: studies in brain slices. Journal of Pharmacology and Experimental Therapeutics, 236, 699707.Google ScholarPubMed
Wolfe, C. & Zacharko, R. M. (1990) Attenuation of stressor induced reward alterations from the VTA following intraventricular enkephalin administration. Annual Meeting of the Canadian Psychological Association, Ottawa.Google Scholar
Zacharko, R. M., Bowers, W. J., Prince, C. R., et al (1983) Behavioral alterations following repeated exposure to foot-shock or desmethylimipramine. Society for Neuroscience Abstracts, 9, 561.Google Scholar
Zacharko, R. M., Bowers, W. J., Kokkinidis, L., et al (1983) Region-specific reductions of intracranial self-stimulation after uncontrollable stress: possible effects on reward processes. Behavioral Brain Research, 9, 129141.CrossRefGoogle ScholarPubMed
Zacharko, R. M., Bowers, W. J., Kelley, M. S., et al (1984) Prevention of stressor-induced disturbances of self-stimulation by desmethylimipramine. Brain Research, 321, 175179.CrossRefGoogle ScholarPubMed
Zacharko, R. M., Bowers, W. J. & Anisman, H. (1984) Responding for brain stimulation: stress and desmethylimipramine. Progress in Neuropsychopharmacology and Biological Psychiatry, 8, 601606.CrossRefGoogle ScholarPubMed
Zacharko, R. M., Lalonde, G., Kasian, M., et al (1987) Strain-specific effects of inescapable shock on intracranial self-stimulation from the nucleus accumbens. Brain Research, 426, 164168.CrossRefGoogle ScholarPubMed
Zacharko, R. M. & Anisman, H. (1989) Pharmacological, biochemical and behavioral analysis of depression: animal models. In Animal Models of Depression (eds Koob, G., Ellers, C. & Bloom, F. E.). Boston: Birkhauser.Google Scholar
Zacharko, R. M. & Anisman, H. (1990) Stressor-provoked alterations of intracranial self-stimulation in the mesocorticolimbic system: an animal model of depression. In The Mesolimbic Dopamine System: From Motivation to Action (eds Willner, P. & Scheel-Kruger, J.). London: Wiley.Google Scholar
Submit a response

eLetters

No eLetters have been published for this article.