Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-17T05:51:18.121Z Has data issue: false hasContentIssue false

About the secondary electron yield and the sign of charging of electron irradiated insulators

Published online by Cambridge University Press:  15 September 2001

J. Cazaux*
Affiliation:
DTI (UMR 6107), Faculté des Sciences, BP 1039, 51687 Reims Cedex 2, France
Get access

Abstract

Following the total yield approach (used to predict the sign of charging of electron irradiated insulators) a positive charging is expected when the primary beam energy Ep is situated in the energy range where the number of outgoing electrons, $(\delta + \eta) I_0$, is larger than the number of incoming electrons, I0. But a negative charging is often experimentally observed when a positive charging is predicted. The present paper is an attempt to elucidate this experimental fact. The arguments being developed are based on the use of a dynamic double layer model (+ for the secondary electron mission, SEE; − for the incident electron implantation) which explains a negative charging via the influence of an evolving S-shape potential function, V(z), which induces a partial freezing of the nominal (uncharged) SEE, δ°, combined to a progressive compression of the negative space charge below the surface. The observed large difference in the measurements of the yield by using pulse excitation methods, or by permanent irradiation methods, δ° or δ is then explained. Furthermore, the influence of an oblique incidence is also deduced.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

L. Reimer in Scanning Electron Microscopy, Springer Series in Optical Sciences (Springer Verlag Berlin, 1985), Chaps. 3-5, Vol. 45, p. 119.
L. Reimer, in Image Formation in Low Voltage SEM (SPIE publisher, 1993), p. 71.
Cazaux, J., J. Appl. Phys. 89, 8265 (2001). CrossRef
Cazaux, J., J. Appl. Phys. 85, 1137 (1999). CrossRef
Melchinger, A., Hofmann, S., J. Appl. Phys. 78, 6224 (1995). CrossRef
Cazaux, J., J. Electron Spectrosc. Relat. Phenom. 105, 155 (1999). CrossRef
Gomoyunova, M.V. , Letunov, N.A., Sov. Phys. Solid State 7, 316 (1965).
Whetten, N.R., J. Appl. Phys. 35, 3279 (1964). CrossRef
Reimer, L., Golla, V., Bongeler, R., Kassens, M., Schindler, M., Senkel, R., Optik 92, 14 (1992).
Cazaux, J., J. Appl. Phys. 59, 1418 (1986). CrossRef
Glavatskikh, I.A., Kortov, V.S., Fitting, H.J., J. Appl. Phys. 89, 440 (2001). CrossRef
Kanaya, K. , Okayama, S., J. Phys. D Appl. Phys. 5, 43 (1972). CrossRef
M.P. Seah in Practical Surface Analysis, edited by D. Briggs, M.P. Seah, 2nd edn. (J. Wiley and Sons, Chichester, 1990), Appendix 2, p. 541.
Ura, K., J. Electron Microscopy 47, 143 (1999). CrossRef
Taniguchi, J., Miyamoto, I., Ohno, N., Honda, S., Nucl. Instrum. Methods Phys. Res. B 121, 507 (1997). CrossRef
Ascarelli, P., Cappelli, E., Pinzari, F., Rossi, M.C., Salvatiri, S., Merli, P.G., Migliori, A., J. Appl. Phys. 89, 689 (2001). CrossRef
Loi, H.J., Whitfield, M.D., Foord, J.C., Thin Solid Films 343-344, 623 (1999). CrossRef
Cazaux, J., J. Electron Spectrosc. Relat. Phenom. 113, 15 (2000). CrossRef