Hostname: page-component-5c6d5d7d68-qks25 Total loading time: 0 Render date: 2024-08-15T15:21:30.264Z Has data issue: false hasContentIssue false

Advanced backside sample preparation for multi-technique surface analysis

Published online by Cambridge University Press:  18 August 2011

M. Py*
Affiliation:
CEA-Leti, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
M. Veillerot
Affiliation:
CEA-Leti, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
J.M. Fabbri
Affiliation:
CEA-Leti, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
F. Pierre
Affiliation:
CEA-Leti, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
D. Jalabert
Affiliation:
CEA-INAC/UJF-Grenoble 1 UMR-E, SP2M, LEMMA, Minatec, Grenoble Cedex 38054, France
C. Roukoss
Affiliation:
LTM-CNRS/CEA-LETI, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
B. Pelissier
Affiliation:
LTM-CNRS/CEA-LETI, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
R. Boujamaa
Affiliation:
CEA-Leti, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France ST Microelectronics, 850 rue de Jean Monnet, 38926 Crolles, France
C. Trouiller
Affiliation:
ST Microelectronics, 850 rue de Jean Monnet, 38926 Crolles, France
J.P. Barnes
Affiliation:
CEA-Leti, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
Get access

Abstract

Backside sample preparation is a well-known method to help circumvent undesired effects and artifacts in the analysis of a sample or device structure. However it remains challenging in the case of thin layers analysis since only a fraction oRelax;f the original sample must remain while removing most or all of the substrate and maintaining a smooth and flat surface suitable for analysis. Here we present a method adapted to the preparation of ultrathin layers grown on pure Si substrates. It consists in a mechanical polishing up to a few remaining microns, followed by a dedicated wet etch. This method can be operated in a routine fashion and yields an extremely flat and smooth surface, without any remaining Si from substrate. It therefore allows precise analysis of the layers of interests with various characterization techniques.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Laugier, F. et al., Appl. Surf. Sci. 231–232, 668 (2004)CrossRef
Hongo, C. et al., Appl. Surf. Sci. 231–232, 594 (2004)CrossRef
Hongo, C., Tomita, M., Takenaka, M., Appl. Surf. Sci. 231–232, 673 (2004)CrossRef
Sameshima, J. et al., Appl. Surf. Sci. 231–232, 614 (2004)CrossRef
Bennett, J., Quevedo-Lopez, M., Satyanarayana, S., Appl. Surf. Sci. 252, 7167 (2006)CrossRef
Hantschel, T. et al., in Electron Crystallography for Materials Research and Quantitative Characterization of Nanos- tructured Materials, edited by Moeck, P. et al. (Materials Research Society, Warrendale, 2009), pp. 185 Google Scholar
Conard, T. et al., Appl. Surf. Sci. 231–232, 581 (2004)CrossRef
Vandervorst, W. et al., Appl. Surf. Sci. 231–232, 569 (2004)CrossRef
Hopstaken, M.J.P. et al., AIP Conf. Proc. 1173, 94 (2009)CrossRef
Tabata, O. et al., Sens. Actuators A: Phys. 34, 51 (1992)CrossRef
Baboux, N. et al., J. Cryst. Growth 245, 1 (2002)CrossRef
Ziegler, J.F. Biersack, J.P., Littmark, U., The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985)Google Scholar
Pelissier, B. et al., Microelectron. Eng. 85, 1882 (2008)CrossRef
Petersen, K.E., IEEE Trans. Electron Devices 25, 1241 (1978)CrossRef
Nieveen, W. et al., Appl. Surf. Sci. 231–232, 556 (2004)CrossRef