Hostname: page-component-7bb8b95d7b-qxsvm Total loading time: 0 Render date: 2024-10-02T18:13:38.729Z Has data issue: false hasContentIssue false

AlGaN/GaN MOS-HFETs based on InGaN/GaN MQW structures with Ta2O5 dielectric

Published online by Cambridge University Press:  01 March 2012

K.H. Lee*
Affiliation:
National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan, P.R. China
P.C. Chang
Affiliation:
Department of Electro-Optical Engineering, Kun Shan University, Yung-Kang Dist., Tainan City 71003, Taiwan, P.R. China
S.J. Chang
Affiliation:
Institute of Microelectronics and Department of Electrical Engineering, Center for Micro/Nano Science and Technology, Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan City 70101, Taiwan, P.R. China
Y.C. Yin
Affiliation:
Department of Electrical Engineering, Fu Jen Catholic University, Zhong-Zheng Rd. 510, 24205 New Taipei City, Taiwan, P.R. China
Get access

Abstract

We report on metal-oxide-semiconductor (MOS) AlGaN/GaN heterostructure field effect transistors (HFETs) based on InGaN/GaN multiple quantum well (MQW) structure using Ta2O5 dielectric deposited by electron beam evaporation (EBE) simultaneously for surface passivation and as a gate insulator. The device features a 5-pair MQW layer inserted into the AlGaN/GaN two-channel HFET structure. It results in a raised potential barrier, which leads to better carrier confinement and effective access to the InGaN layer. However, it revealed a pronounced leakage current which may be generated from the bottom Si-doped GaN and/or the sidewall leakage paths due to the exposure of channels after mesa etching. Both passivated MQW-HFET and MOS MQW-HFET present enhanced dc- and pulsed-mode performance compared to unpassivated one. In terms of transfer characteristics, MOS MQW-HFET exhibits the larger and broader main peak yet smaller satellite peak relative to passivated MQW-HFET. The reduced gate and mesa-to-mesa leakage current indicates the successful passivation effect from EBE-Ta2O5 dielectric.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Loghmany, A., Valizadeh, P., J. Phys D: Appl. Phys. 44, 125102 (2011)CrossRef
Yoshida, S., Ishii, H., Li, J., Wang, D., Ichikawa, M., Solid-State Electron. 47, 589 (2003)CrossRef
Hsu, Y.P., Chang, S.J., Su, Y.K., Sheu, J.K., Lee, C.T., Wen, T.C., Wu, L.W., Kuo, C.H., Chang, C.S., Shei, S.C., J. Cryst. Growth 261, 466 (2004)CrossRef
Lee, D.H., Lee, H.K., Yu, J.S., Bae, S.J., Choi, J.H., Kim, D.H., Ju, I.C., Song, K.M., Kim, J.M., Shin, C.S., Semicond. Sci. Technol. 26, 055014 (2011)CrossRef
Palacios, T., Chakraborty, A., Heikman, S., Keller, S., DenBaars, S.P., Mishra, U.K., IEEE Electron Device Lett. 27, 13 (2006)CrossRef
Liu, J., Zhou, Y., Zhu, J., Lau, K.M., Chen, K.J., IEEE Electron Device Lett. 27, 10 (2006)
Vetury, R., Zhang, N.Q., Keller, S., Mishra, U.K., IEEE Trans. Electron Devices 48, 560 (2001)CrossRef
Hasegawa, H., Inagaki, T., Ootomo, S., Hashizume, T., J. Vac Sci. Technol. B: Microelectron. Process. Phenom. 21, 1844 (2003)CrossRef
DiSanto, D.W., Sun, H.F., Bolognesi, C.R., Appl. Phys. Lett. 88, 013504 (2006)CrossRef
Antoszewski, J., Gracey, M., Dell, J.M., Faraone, L., Fisher, T.A., Parish, G., Wu, Y.-F., Mishra, U.K., J. Appl. Phys. 87, 3900 (2000)CrossRef
Hu, X., Koudymov, A., Simin, G., Yang, J., Khan, M.A., Tarakji, A., Shur, M.S., Gaska, R., Appl. Phys. Lett. 79, 2832 (2001)CrossRef
Khan, M.A., Hu, X., Simin, G., Lunev, A., Yang, J., Gaska, R., Shur, M.S., IEEE Electron Device Lett. 21, 3375 (2000)CrossRef
Heidelberger, G., Bernát, J., Fox, A., Marso, M., Lüth, H., Gregušová, D., Kordoš, P., Phys. Status Solidi A: Appl. Mat. 203, 1876 (2006)CrossRef
Khan, M.A., Hu, X., Tarakji, A., Simin, G., Yang, J., Gaska, R., Shur, M.S., Appl. Phys. Lett. 77, 1339 (2000)CrossRef