Hostname: page-component-7bb8b95d7b-lvwk9 Total loading time: 0 Render date: 2024-09-15T02:24:36.405Z Has data issue: false hasContentIssue false

The characterization and properties of InN grown by MOCVD

Published online by Cambridge University Press:  04 October 2008

S.-G. Dong
Affiliation:
Institute of Optoelectronic Materials and Technology, South China Normal University, Guangzhou 510631, P.R. China Department of Optoelectronic and Physics, Foshan University, Foshan 528000, P.R. China
G.-H. Fan*
Affiliation:
Institute of Optoelectronic Materials and Technology, South China Normal University, Guangzhou 510631, P.R. China
Y.-C. Shuai
Affiliation:
Institute of Optoelectronic Materials and Technology, South China Normal University, Guangzhou 510631, P.R. China
Get access

Abstract

The characterization and properties of InN thin films grown on GaN templates by metalorganic chemical vapor deposition (MOCVD) at various growth temperatures were investigated. Their carrier concentrations ranged from 4.6 × 1018 to 4 × 1019 cm−3and mobility valued from 150 to 1300 cm2/V s. The variation of the growth temperature brought about different growth rates. It was also found that growth rate is increased with the increasing growth temperature and reached 470 nm/h for the InN epitaxial layer grown at 675 °C. The surface roughness of InN layers was obtained from AFM measurement. The structural quality of the InN layers was determined by TEM. The surface and cross-sectional morphologies of these films are evaluated by SEM. The layer crystalline quality was investigated by means of X-ray diffraction in the rocking curves. Photoluminescence measurements performed at 7 K and room temperature gave emission peaks at around 0.7 eV.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bhuiyan, A.G., Hashimoto, A., Yamamoto, A., J. Appl. Phys. 94, 2779 (2003) CrossRef
Jain, S.C., Willander, M., Narayan, J., Overstraeten, R.V., J. Appl. Phys. 87, 965 (2000) CrossRef
Xie, Z.L., Zhang, R., Liu, B., Li, L., Liu, C.X., Xiu, X.Q., Zhao, H., Han, P., Gu, S.L., Shi, Y., Zheng, Y.D., J. Cryst. Growth 298, 409 (2007) CrossRef
Bi, Z., J. Cryst. Growth 300, 123 (2007) CrossRef
Wang, L.L., Wang, H., Chen, J., Sun, X., Zhu, J.J., Jiang, D.S., Yang, H., Liang, J.W., Superlatt. Microstruct. 43, 81 (2008) CrossRef
Intartaglia, R., Maleyre, B., Ruffenach, S., Briot, O., Taliercio, T., Gil, B., Appl. Phys. Lett. 86, 142104 (2005) CrossRef
Bi, Z.X., Zhang, R., Xie, Z.L., Xiu, X.Q., Ye, Y.D., Liu, B., Gu, S.L., Shen, B., Shi, Y., Zheng, Y.D., Mater. Lett. 58, 3641 (2004) CrossRef
Singh, P., Ruterana, P., Morales, M., Goubilleau, F., Wojdak, M., Carlin, J.F., Ilegems, M., Chateigner, D., Superlatt. Microstruct. 36, 537 (2004) CrossRef
Huang, Y., Wang, H., Sun, Q., Chen, J., Li, D.Y., Wang, Y.T., Yang, H., J. Cryst. Growth 276, 3 (2005)
Ruterana, P., Abouzaid, M., Gloux, F., Maciej, W., Doualan, J.L., Drago, M., Schmidtling, T., Pohl, U.W., Richter, W., Phys. Stat. Sol. (a) 203, 158 (2006) CrossRef
Lin, J.C., Su, Y.K., Chang, S.J., Lan, W.H., Chen, W.R., Cheng, Y.C., Lin, W.J., Tzeng, Y.C., Shin, H.Y., Chang, C.M., Opt. Mater. 30, 517 (2007) CrossRef
Zhu, X.L., Guo, L.W., Yu, N.S., Yan, J.F., Peng, M.Z., Zhang, J., Jia, H.Q., Chen, H., Zhou, J.M., J. Cryst. Growth 306, 292 (2007) CrossRef
Wang, H., Huang, Y., Sun, Q., Chen, J., Zhu, J.J., Wang, L.L., Wang, Y.T., Yang, H., Wu, M.F., Qu, Y.H., Jiang, D.S., Mater. Lett. 61, 516 (2007) CrossRef
Y. Nanishi, Y. Saito, T. Yamaguchi, F. Matsuda, T. Araki, H. Naoi, A. Suzuki, H. Harima, T. Miyajima, Mater. Res. Soc. Symp. Proc. 798, Y12.1.1-Y12.1.12 (2004)
V. Davydov, A. Khlochikin, S. Ivanov, J. Aderhold, A. Yamamoto, Nitride semiconductors, in Hand Book on Materials and Devices, edited by P. Ruterana, M. Albrecht, J. Neugebauer (Wiley-VCH, Weinheim, Germany, 2003), p. 274