Hostname: page-component-5c6d5d7d68-wp2c8 Total loading time: 0 Render date: 2024-08-15T05:06:16.496Z Has data issue: false hasContentIssue false

Correction factor of the Stokes force undergone bya sphere in the axis of a cylinder in uniform and Poiseuille flows

Published online by Cambridge University Press:  16 September 2003

A. Ben Richou
Affiliation:
EMT, ENSAM, 2 boulevard du Ronceray, BP 3525, 49035 Angers, France EMET, Faculté des Sciences et Techniques de Béni Mellal, BP 523, Morocco
A. Ambari*
Affiliation:
EMT, ENSAM, 2 boulevard du Ronceray, BP 3525, 49035 Angers, France
J. K. Naciri
Affiliation:
UFR de Mécanique, Faculté des Sciences Ain Chock, BP 5366, Casablanca, Morocco
Get access

Abstract

To contribute to the existing knowledge of the hydrodynamic force exerted on a spherical particle placed in the axis of a cylinder, at small Reynolds numbers, the influence of the uniform and Poiseuille flows on the wall correction factor are numerically and asymptotically investigated. The Stokes and continuity equations are expressed in the stream function and vorticity formulation and are rewritten in an orthogonal system of curvilinear coordinates. These equations are solved using a finite differences method. The generation of the grid was carried out by the singularities method. The accuracy of the numerical code is tested through comparison with theoretical and experimental results. In both cases we numerically calculated the separate contributions of the pressure and viscosity forces. In concentrated regime these numerical calculations are in very good agreement with those obtained by asymptotic expansions. This analysis allowed us to show the prevalence of the pressure term over the viscosity one in the lubrication regime contrary to what happened for the dilute regime. All our numerical and asymptotical results compared with those of Bungay et al. (Int. J. Multiphase Flow 1, 25–56 (1973)) seem to give a response to this problem argued for a long time.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ladenburg, R., Ann. Phys. 23, 447 (1907) CrossRef
Faxèn, H., Ark. Mat. Aston. Fys. 17, 1 (1922)
Wakiya, S., J. Phys. Soc. Jap. 8, 254 (1953) CrossRef
Happel, J., Byrne, B.J., Ind. Eng. Chem. 46, 1181 (1954) CrossRef
J. Happel, H. Brenner, Low Reynolds number hydrodynamics (Prentice Hall, Englewood Cliffs, New Jersey, 1965)
W.L. Haberman, Ph.D. thesis, University of Maryland, 1956
W.L. Haberman, R.M. Sayre, Motion of rigid and fluid spheres in stationnary and moving liquids inside cylindrical tubes, David Taylor Model Basin, Rep. 1143 (1958)
Bohlin, T., Trans. Roy. Inst. Technol., Stockholm 155, 3 (1960)
Skalak, R., Wang, H., J. Fluid Mech. 38, 75 (1969)
Bourot, J.M., Sigli, D., C.R. Acad. Sci. (Paris) Sér. A 270, 343 (1970)
M. Coutanceau, Contribution à l'étude théorique et expérimentale de l'écoulement autour d'une sphère qui se déplace dans l'axe d'un cylindre, à faible nombre de Reynolds ou en régime irrotationnel, Thèse d'État, Université de Poitiers, 1971
Paine, P.L., Sherr, P., Biophys. J. 15, 1087 (1975) CrossRef
Tözeren, H., J. Fluid Mech. 129, 77 (1983) CrossRef
Wu, R.M., Lee, D.L., Chem. Eng. Sci. 54, 5717 (1999) CrossRef
Feng, Z.G., Michaelides, E.E., Int. J. Multiphase Flow 28, 479 (2002) CrossRef
Francis, A.W., Physics 4, 403 (1933) CrossRef
Filderis, V., Whitmore, R.L., Brit. J. Appl. Phys. 12, 490 (1961)
Iwoaka, M., Ishii, T., J. Chem. Eng. Jpn 12, 239 (1979) CrossRef
Ambari, A., Gauthier Manuel, B., Guyon, E., J. Fluid Mech. 149, 235 (1984) CrossRef
Ambari, A., Gauthier Manuel, B., Guyon, E., Phys. Fluids 28, 1559 (1985) CrossRef
J.S. Mc Nown, H.M. Lee, M.B. Mc Pherson, S.M. Engez, in Proceedings of the VII International Congress on Applied Mechanics, London, England, 1948 , Vol. 2, Part I, pp. 17-29
Bungay, P.M., Brenner, H., Int. J. Multiphase Flow 1, 25 (1973) CrossRef
Luu, T.S., Phuoc Loc, T.A., J. Méc. Fluides Appl. 5, 483 (1981)
T.S. Luu, G. Coulmy, Principe et application de la méthode des singularités à répartition discrétisée en hydro et aérodynamique, Notes et Documents LIMSI: 90-11 novembre 1990
T.S. Luu, G. Coulmy, Design problem relating to profile or a cascad of profils and construction of orthogonal networks using the Riemann surfaces for the multiform singularities, Symposium on advanced Boundary element methods: application in solid and fluid mechanics, 13-16 April 1987
J. Katz, A. Plotkin, Low-speed Aerodynamics From Wing Theory to Panel Methods (Mc Graw-Hill series in Aeronautical and Aerospace Engineering, 1991)
R. Peyret, T.D. Taylor, Computational Methods for fluid flow (Springer-Verlag, 1985)
Quartappelle, L., J. Comput. Phys. 40, 453 (1981) CrossRef
Peaceman, D.W., Rachford, H.H., J. Soc. Ind. Appl. Math. 3, 28 (1955) CrossRef
Douglas Jr, J.., J.E. Gunn, Num. Math. 6, 428 (1964) CrossRef
Frankel, S.P., Math. Tables Aids Compt. 4, 65 (1950) CrossRef
M. Lavrentiev, B. Chabat, Méthodes de la théorie des fonctions d'une variable complexe (Ed. Mir, Moscou, 1972)