Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-17T15:17:49.599Z Has data issue: false hasContentIssue false

Density-driven convection roll in annular vibrated granular bed

Published online by Cambridge University Press:  03 August 2012

N.A. Sheikha*
Affiliation:
Department of Mechanical Engineering, Muhammad Ali Jinnah University, Islamabad, Pakistan
*
Get access

Abstract

The author presents the results of inelastic granular flow in an annular vibro-fluidized granular bed using hydrodynamic model suitable for dense inelastic granular gas. Using the steady-state balances of mass, momentum and energy for dissipative dense gas, the physics of the vibrated bed is initially validated in comparison with molecular dynamics (MD) simulations using the observable system parameters such as packing fraction and granular temperature. The instability of the vibrated bed is also explored due to the influence of additional dissipative inner wall. The phase map of inner and outer wall dissipations shows a characteristic line of division between the single roll systems with opposite rotations. In addition to single roll, a two roll system is observed as the density of the flow increases. The results show a qualitatively similar trend as seen in MD simulations for higher cell loadings. The findings are important as the results indicate that the increase in the packing fraction, in addition to side wall dissipation, leads to complex flow instabilities in the granular flow.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Garzo, V., Dufty, J.W., Hrenya, C.M., Phys. Rev. E 76, 031303 (2007)CrossRef
Goldshtein, A., Shapiro, M., J. Fluid Mech. Digit. Arch. 282, 75 (2006)CrossRef
Lun, C.K.K., J. Fluid Mech. Digit. Arch. 233, 539 (2006)CrossRef
Alain, B., Emmanuel, T., Matthieu, H.E., Condens. Matter 17, S2429 (2005)
Brey, J.J., Dufty, J.W., Santos, A., J. Stat. Phys. 97, 281 (1999)CrossRef
Bizon, C., Shattuck, M.D., Swift, J.B., McCormick, W.D., Swinney, H.L., Phys. Rev. Lett. 80, 57 (1998)CrossRef
Luding, S., Clement, E., Rajchenbach, J., Duran, J., Europhys. Lett. 36, 247 (1996)CrossRef
Viswanathan, H., Sheikh, N.A., Wildman, R.D., Huntley, J.M., J. Fluid Mech. 682, 185 (2011)CrossRef
Serna, S., Marquina, A., J. Comput. Phys. 209, 787 (2005)CrossRef
Wildman, R.D., Martin, T.W., Krouskop, P.E., Talbot, J., Huntley, J.M., Parker, D.J., Phys. Rev. E 71, 061301 (2005)CrossRef
Khain, E., Meerson, B., Phys. Rev. E 67, 021306 (2003)CrossRef
Talbot, J., Viot, P., Phys. Rev. Lett. 89, 064301 (2002)CrossRef
Talbot, J., Viot, P., Physica A 314, 672 (2002)CrossRef
Wildman, R.D., Huntley, J.M., Parker, D.J., Phys. Rev. Lett. 86, 3304 (2001)CrossRef
Ramirez, R., Risso, D., Cordero, P., Phys. Rev. Lett. 85, 1230 (2000)CrossRef
Wildman, R.D., Huntley, J.M., Parker, D.J., Phys. Rev. E 63, 061311 (2001)CrossRef
Jenkins, J.T., Savage, S.B., J. Fluid Mech. Digit. Arch. 130, 187 (1983)CrossRef
Savage, S.B., Sayed, M., J. Fluid Mech. Digit. Arch. 142, 391 (1984)CrossRef
Jenkins, J.T., Richman, M.W., Arch. Ration. Mech. Anal. 87, 355 (1985)CrossRef
Kumaran, V., J. Fluid Mech. 364, 163 (2000)CrossRef
Montanero, J.M., Garzo, V., Santos, A., Brey, J.J., J. Fluid Mech. 389, 391 (2000)CrossRef
Brey, J.J., Dufty, J.W., Kim, C.S., Santos, A., Phys. Rev. E 58, 4638 (1998)CrossRef
Jenkins, J.T., Savage, S.B., J. Fluid Mech. Digit. Arch. 130, 187 (2006)CrossRef
Garzo, V., Dufty, J.W., Phys. Rev. E 59, 5895 (1999)CrossRef
Carnahan, N.F., Starling, K.E., J. Chem. Phys. 51, 635 (1969)CrossRef
Torquato, S., Phys. Rev. E 51, 3170 (1995)CrossRef
Richman, M.W., Mech. Mater. 16, 211 (1993)CrossRef