Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-15T23:52:14.186Z Has data issue: false hasContentIssue false

Dopant-site dependent properties of nitrogen and boron doped spherical nanodiamond particles from first-principle DFT simulation

Published online by Cambridge University Press:  21 July 2011

M. Kavosh Tehrani*
Affiliation:
Department of Physics, Malek-Ashtar University of Technology, Shahin Shahr P.O. Box 83145-115, Shahin Shahr, Iran
M. Heidari Saani
Affiliation:
Department of Physics, Malek-Ashtar University of Technology, Shahin Shahr P.O. Box 83145-115, Shahin Shahr, Iran Optoelectronic Industry, P.O. Box 19575-199, Artesh Highway Tehran, Iran
Get access

Abstract

We report the effect of nitrogen and boron incorporation in the structure of spherical nanodiamond particles using ab initio density-functional theory. We changed the site of boron and nitrogen impurity from the center to the surface of the particles and calculated structural, electronic, cohesive and surface charge properties of each configuration. By moving the impurity from the center toward the surface, the internal strain of N and B doped nanodiamond drops. Unlike nitrogen, doping of boron causes lower broken bonds around impurity in the central region and also replacement of boron in the surface releases the strain of nanoparticle. We explain this observation by calculating the variation of the surface charge or polarity of the doped particles versus the site of dopant during the movement of impurities toward the surface which reduces the polarity in contrast to behavior of nitrogen doped particle. By moving the boron atom from the center toward the surface of the particle, p-type conduction occurs whereas nitrogen impurity does not create an n-type conduction. Results suggest that boron is a more effective dopant than nitrogen provided that it has not been placed in the central region of nanoparticle.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Drummond, N.D., Williamson, A.J., Needs, R.J., Galli, G., Phys. Rev. Lett. 95, 096801 (2005)CrossRef
Raty, J., Galli, G., van Buuren, T., Terminello, L.J., Phys. Rev. Lett. 90, 037401 (2003)CrossRef
Heidari Saani, M., Kargaryan, M., Ranjbar, A., Phys. Rev. B 76, 035417 (2007)CrossRef
Ramos, L.E., Furthmouller, J., Bechstedt, F., Phys. Rev. B 72, 045351 (2005)CrossRef
Wielley, T.M., Buuren, T.V., Dahl, J.E., Liu, S.G., Carlson, R.M.K., Terminello, L.J., Moller, T., Phys. Rev. Lett. 95, 113401 (2005)CrossRef
Heidari Saani, M., Ghodselahi, T., Esfarjani, K., Phys. Rev. B 79, 125429 (2009)CrossRef
Collins, A.T., Dean, P.J., Lightowlers, E.C., Sherman, W.F., Phys. Rev. 140, A1272 (1965)CrossRef
Chrenko, A.M., Phys. Rev. 151, 685 (1996)
Popovici, G., Wilson, R.G., Sung, T., Prelas, M.A., Khasawinah, S., J. Appl. Phys. 70, 5103 (1995)CrossRef
Smith, W.V., Sorokin, P.P., Gelles, I.L., Lasher, G.J., Phys. Rev. 115, 1546 (1959)CrossRef
Dahl, J.E., Liu, S.G., Carlson, R.M.K., Science 299, 96 (2003)CrossRef
Sattel, S., Robertsson, J., Tass, Z., Scheib, M., Wiescher, D., Erhard, H., Diam. Relat. Mater. 6, 255 (1997)CrossRef
Zapol, P., Sternberg, M., Curtiss, L.A., Frauenheim, T., Gruen, D.M., Carlisle, J.A., Phys. Rev. B 65, 045403 (2001)CrossRef
Barnard, A.S., Sternberg, M., Nanotechnology 18, 025702 (2007)CrossRef
Barnard, A.S., Sternberg, M., J. Phys. Chem. B 109, 17107 (2005)CrossRef
Barnard, A.S., Sternberg, M., J. Phys. Chem. B 110, 19307 (2006)CrossRef
Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Zakrzewski, V.G., Montgomery, J.A. Jr., Stratmann, R.E., Burant, J.C., Dapprich, S., Millam, J.M., Daniels, A.D., Kudin, K.N., Strain, M.C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G.A., Ayala, P.Y., Cui, Q., Morokuma, K., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Cioslowski, J., Ortiz, J.V., Baboul, A.G., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Gonzalez, C., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Andres, J.L., Gonzalez, C., Head-Gordon, M., Replogle, E.S., Pople, J.A., Gaussian 98, Revision A.7 (Gaussian, Inc., Pittsburgh, PA, 1998)Google Scholar
Becke, A.D., J. Chem. Phys. 98, 5648 (1993)CrossRef
McIntosh, C.G., Yoon, M., Berber, S., Tomanek, D., Phys. Rev. B 70, 045401 (2004)CrossRef