Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-12T17:48:49.708Z Has data issue: false hasContentIssue false

Etching of low-k materials in high density fluorocarbon plasma*

Published online by Cambridge University Press:  23 November 2004

D. Eon
Affiliation:
IMN-LPCM, Université de Nantes, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 03, France
V. Raballand*
Affiliation:
IMN-LPCM, Université de Nantes, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 03, France
G. Cartry
Affiliation:
IMN-LPCM, Université de Nantes, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 03, France
M.-C. Peignon-Fernandez
Affiliation:
IMN-LPCM, Université de Nantes, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 03, France
Ch. Cardinaud
Affiliation:
IMN-LPCM, Université de Nantes, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 03, France
Get access

Abstract

Low dielectric constant materials (low-k) are used as interlevel dielectrics in integrated circuits. This paper concerns the etching process of these materials in high density plasma with the aim to provide some insights concerning the etch mechanisms. Materials studied are methylsilsesquioxane (MSQ) polymers, either dense (SiOC) or containing 40% of porosity (porous SiOC). Amorphous hydrogenated silicon carbide (SiC) material, used as hard mask and/or etch stop layer, is also investigated. Etch is performed in an inductively coupled reactor using fluorocarbon gases, which have proven to be very successful in the etch of conventional SiO2. First, etching with hexafluoroethane (C2F$_{6})$ is performed. Although etch rates are high, etch selectivities with respect to SiC are weak. So, oxygen, argon, and hydrogen are added to C2F6 with the aim of improving selectivities. The best selectivity is obtained for the C2F6/H2 (10%–90%) mixture. To understand etch rate and selectivity variations, plasma analyses by optical emission spectroscopy are correlated to surface analysis using X-Ray Photoelectron Spectroscopy (XPS). In general, atomic fluorine concentration in the plasma explains the etch rate, while the presence of a fluorocarbon layer on the surface is well correlated to the selectivity. To ensure that the etch process does not affect materials properties, and particularly their dielectric constant, bulk analysis by Fourier Transformed Infra-Red spectroscopy and images by Scanning Electron Microscopy have also been carried out.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This paper has been first presented at the CIP colloquium in June 2003

References

Maex, K., Baklanov, M.R., Shamiryan, D., Lacopi, F., Brongersma, S.H., Yanovitskaya, Y.S., J. Appl. Phys. 93, 8793 (2003) CrossRef
Kim, J.Y., Hwang, M.S., Kim, Y.-H., Kim, H.J., Lee, Y., J. Appl. Phys. 90, 2469 (2001) CrossRef
Fayolle, M., Torres, J., Passemard, G., Fusalbe, F., Fanget, G., Louis, D., Assous, M., Louveau, O., Rivoire, M., Haxaire, K., Mourier, M., Maitrejean, S., Besson, P., Broussous, L., Arnaud, L., Feldis, H., Microelectron. Eng. 64, 35 (2002) CrossRef
Mosig, K., Jacobs, T., Brennan, K., Rasco, M., Wolf, J., Augur, R., Microelectron. Eng. 64, 11 (2002) CrossRef
Donaton, R.A., Coenegrachts, B., Maenhoudt, M., Pollentier, I., Struyf, H., Vanhaelemeersch, S., Vos, I., Meuris, M., Fyen, W., Beyer, G., Tokei, Z., Stucchi, M., Vervoort, I., De Roest, D., Maex, K., Microelectron. Eng. 55, 277 (2001) CrossRef
F. Gaboriau, Ph.D. thesis, Nantes University, France, 2001 (in French)
Gaboriau, F., Peignon, M.-C., Cartry, G., Rolland, L., Eon, D., Cardinaud, C., Turban, G., J. Vac. Sci. Technol. A 20-3, 919 (2002) CrossRef
Gaboriau, F., Cartry, G., Peignon, M.C., Cardinaud, Ch., J. Vac. Sci. Technol. B 20, 1514 (2002) CrossRef
Standaert, T.E.F.M., Matsuo, P.J., Allen, S.D., Oehrlein, G.S., Dalton, T.J., Lu, T.-M., Gutmann, R., Matter. Res. Soc. Symp. Proc. 511, 265 (1998) CrossRef
Standaert, T.E.F.M., Matsuo, P.J., Allen, S.D., Oehrlein, G.S., Dalton, T.J., J. Vac. Sci. Technol. A 17, 741 (1999) CrossRef
Coburn, J.W., Chen, M., J. Appl. Phys. 51, 3134 (1980) CrossRef
Kong, S.-M., Choi, H.-J., B.-T. lee, S.-Y. Han, J.L. Lee, J. Electron. Mat. 31, 209 (2002) CrossRef
V. Raballand, D. Eon, G. Cartry, M.-C. Peignon, C. Cardinaud, in Proceedings of the VIII e Congrès Plasmas de la Société Française de Physique, Cadarache, 2003, edited by X.L. Zou, p. 66 (in French)
F. Gaboriau, G. Cartry, M.-C. Peignon, L. Rolland, C. Cardinaud, G. Turban, in Proceedings of the 15th International Symposium on Plasma Chemistry, Orléans, 2001, edited by A. Bouchoule, J.M. Pouvesle, A.L. Thomann, J.M. Bauchire, E. Robert (GREMI, CNRS/University of Orleans, 2001), p. 1689
Lieberman, M.A., Lichtenberg, A.J., Marakhtanov, A.M., Appl. Phys. Lett. 75, 3617 (1999) CrossRef
Chabert, P., Lichtenberg, A.J., Lieberman, M.A., Marakhtanov, A.M., Plasma Sources Sci. Technol. 10, 478 (2001) CrossRef
Tuszewski, M., J. Appl. Phys. 79, 8967 (1996) CrossRef
Corr, C.S., Steen, P.G., Graham, W.G., Plasma Sources Sci. Technol. 12, 265 (2003) CrossRef
L. Rolland, Ph.D. thesis, Nantes University, France, 2000 (in French)
Miyata, K., Hori, M., Goto, T., J. Vac. Sci. Technol. A 14, 2343 (1996) CrossRef
Mor, Y.S., Chang, T.C., Liu, P.T., Tsai, T.M., Chen, C.W., Yan, S.T., Chu, C.J., Wu, W.F., Pan, F.M., Lur, W., Sze, S.M., J. Vac. Sci. Technol. B 20, 1334 (2002) CrossRef
Grill, A., Neumayer, D.A., J. Appl. Phys. 94, 6697 (2003) CrossRef
Posseme, N., Chevolleau, T., Joubert, O., Vallier, L., J. Vac. Sci. Technol. B 21, 2432 (2003) CrossRef