Hostname: page-component-5c6d5d7d68-tdptf Total loading time: 0 Render date: 2024-08-09T14:24:28.658Z Has data issue: false hasContentIssue false

Evaluation of coupling losses in RTD-superconducting cablesusing OPIT and IBAD tapes

Published online by Cambridge University Press:  15 August 1999

A. Stroock
Affiliation:
Laboratoire de Génie Électrique de Paris, ESE, CNRS, Universités Paris VI et XI, plateau du Moulon, 91192 Gif-sur-Yvette Cedex, France Électricité de France, DER, 1 avenue du Général de Gaulle, 92141 Clamart Cedex, France
P. Manuel
Affiliation:
Électricité de France, DER, 1 avenue du Général de Gaulle, 92141 Clamart Cedex, France
F. Bouillault*
Affiliation:
Laboratoire de Génie Électrique de Paris, ESE, CNRS, Universités Paris VI et XI, plateau du Moulon, 91192 Gif-sur-Yvette Cedex, France
Get access

Abstract

Models are proposed for two major components of the coupling eddy currents, induced in RTD- HTSC power transmission cables by a time varying transverse magnetic field. We consider multi-layer, multi-tape cable designs in which the winding direction alternates with each layer. By assuming unsaturated operation in the tapes we calculate resistive losses for a wide range of possible inter-tape contact resistances. Specific results are given for two hypothetical tape models corresponding to multi-filamentary OPIT (Oxyde-Powder In Tube) and thin film IBAD (Ion Beam Assisted Deposition) elaboration processes. Conclusions are made on the constraints that the results may take place on the future designs: particularly, on the decision whether or not to insulate the winding layers.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

D. von Dollen, P. Metra, M. Rahman, Design concept of a room temperature dielectric HTS cable, Proc. American Power Conference, Chicago, 1993, p. 1206.
Morgan, G.M., J. Appl. Phys. 41, 3673 (1970). CrossRef
Carr, W.S., J. Appl. Phys. 45, 929 (1974). CrossRef
G. Ries, IEEE Trans. Magn. MAG 13, 524 (1977).
Stenger, S., Manuel, P., Bouillault, F., J. Phys. III France 6, 1775 (1996). CrossRef