Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-09T10:19:34.988Z Has data issue: false hasContentIssue false

Implementation of tactile feedback by modifying the perceived friction

Published online by Cambridge University Press:  30 May 2008

M. Biet*
Affiliation:
Laboratoire d'Électrotechnique et d'Électronique de Puissance de Lille (L2EP), Project ALCOVE-INRIA, Bât. IRCICA, 50 avenue Halley, 59650 Villeneuve d'Ascq, France
F. Giraud
Affiliation:
Laboratoire d'Électrotechnique et d'Électronique de Puissance de Lille (L2EP), Project ALCOVE-INRIA, Bât. IRCICA, 50 avenue Halley, 59650 Villeneuve d'Ascq, France
B. Lemaire-Semail
Affiliation:
Laboratoire d'Électrotechnique et d'Électronique de Puissance de Lille (L2EP), Project ALCOVE-INRIA, Bât. IRCICA, 50 avenue Halley, 59650 Villeneuve d'Ascq, France
Get access

Abstract

This paper describes implementation and initial evaluation of variable friction displays. We first analyse a device that comprises a stator of an ultrasonic motor supplied by only one channel. In this way, the stator does not induce any rotative movement but creates a slippery feeling on the stator's surface. Considering the range of frequency and amplitude needed to obtain this phenomenon, we interpret it as the squeeze film effect, which may be the dominant factor causing an impression of lubrication. This effect is thus able to decrease the friction coefficient between the fingertip and the stator as a function of the vibration amplitude. Moreover, if we add a position sensor, we can create a textured surface by generating alternatively sliding and braking sensations by tuning the vibration amplitude of the wave. Then, based on the principle of the first device, another device is proposed in order to enable a free exploration of the surface, according to ergonomic requirements.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Shinohara, M., Shimizu, Y., Mochizuki, A., IEEE Trans. Rehabilitation Engineer. 6, 1063 (1998)
C.R. Wagner, S.J. Lederman, R.D. Howe, in Proceedings of the 10th Symp. On Haptic Interfaces For Virtual Envir. and Teleoperator Systs. (HAPTICS.02), March 24-25 2002, pp. 354–355
P.M. Taylor, A. Mose, A. Creed, in Proc. of the 1997 IEEE International Conference on Robotics and Automation, April 1997, pp. 1317–1323
R. Velazquez, E. Pissaloux, M. Wiertlewski, in Proceedings of the 2006 IEEE International Conference on Robotics and Automation, May 2006, pp. 3905–3910
G. Moy, C. Wagner, R.S. Fearing, in IEEE Int. Conf. on Robotics and Automation 2000, pp. 3409–3415
I. Summers, C. Chanter, A. Southall, A. Brady, in Eurohaptics 2001: Conference Proceedings, July 2001, pp. 26–28
I. Poupyrev, S. Maruyama, in Symposium on User Interface Software and Technology, UIST 2003, pp. 217–220
M. Takasaki, H. Kotani, T. Mizuno, T. Nara, in Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, March 2006, pp. 49–54
L. Garbuio, F. Pigache, J.F. Rouchon, B. Lemaire-Semail, B. Nogarede, in Electromotion international scientific quarterly, April–June 2007, Vol. 14, pp. 55–66
T. Watanabe, S. Fukui, IEEE Int. Conf. on Robotics and Automation, 1995, pp. 1134–1139
L. Garbuio, Étude du phénomène de lubrification électroactive à l'aide d'actionneurs piézoélectriques. Application à la réduction des forces de frottement sec dans un moteur à combustion interne, Ph.D. thesis, INPT, France, 2006
F. Pigache, Modélisation causale en vue de la commande d'un translateur piézoélectrique plan pour une application haptique, Ph.D. thesis, USTL, France, 2005
McMillan, A.J., J. Sound Vibr. 205, 323 (1997) CrossRef
Yang, B.D., Chu, M.L., Menq, C.H., J. Sound Vibr. 210, 461 (1998) CrossRef
Moal, P.L., Joseph, E., Ferniot, J.-C., Eur. J. Mech. - A/Solids 19, 849 (2000) CrossRef
Maeno, T., Kobayashi, K., Yamazaki, N., JSME Int. J. 41, 94 (1998) CrossRef
F. Martinot, Caractérisation du rôle de la dynamique du toucher dans la perception de textures, Ph.D. thesis, USTL Lille, France, 2006
J. Loomis, S.J. Lederman, Tactual perception, in Handbook of Perception and Human Performance edited by K. Boff, L. Kaufman, J. Thomas (John Wiley & Sons, New York, 1986)
Salbu, E.O.J., ASME J. Basic Engng. 86, 355 (1964) CrossRef
M. Wiesendanger, Squeeze Film air Bearings Using Piezoelectric Bending Elements, Ph.D. thesis, EPFL, Switzerland, 2000
Maeno, T., Kobayashi, K., Yamazaki, N., Bull. JSME Int. J. 41, 94 (1998) CrossRef
Smith, A.M., Gosselin, G., Houde, B., Exp. Brain Res. 147, 209 (2002) CrossRef
Maeno, T., Bogy, D.B., IEEE Trans. Ultrason. Ferroelectr. Frequency Control 39, 675 (1992) CrossRef
M. Biet, L. Boulon, F. Martinot, F. Giraud, B. Semail, IEEE WorldHaptics, 385 (2007)
Giraud, F., Lemaire-Semail, B., Audren, J.-T., IEEE Trans. Ind. Appl. 40, 1541 (2004) CrossRef
Pigache, F., Lemaire-Semail, B., Giraud, F., Eur. Phys. J. Appl. Phys. 34, 55 (2006) CrossRef
F. Martinot, A. Houzefa, M. Biet, C. Chaillou, in 14th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, March 2006, pp. 297–300
J. Pasquero, V. Hayward, in Eurohaptics Proceedings, Dublin, July 2003, pp. 94–110
Lederman, S.J., Klatzky, R.L., Cognitive Psychol. 19, 342 (1987) CrossRef