Hostname: page-component-84b7d79bbc-g5fl4 Total loading time: 0 Render date: 2024-07-29T18:18:11.189Z Has data issue: false hasContentIssue false

Influence of dislocation content on the quantitative determination of the doping level distribution in n-GaAs using absorption mapping

Published online by Cambridge University Press:  24 June 2006

U. Künecke*
Affiliation:
Institute for Materials Science 6, University of Erlangen, Martensstr. 7, 91058 Erlangen, Germany
P. J. Wellmann
Affiliation:
Institute for Materials Science 6, University of Erlangen, Martensstr. 7, 91058 Erlangen, Germany
Get access

Abstract

In an earlier paper [P.J. Wellmann, A. Albrecht, U. Künecke, B. Birkmann, G. Mueller, M. Jurisch, Eur. Phys. J. Appl. Phys. 27, 357 (2004)] an optical method based on whole wafer absorption measurements was presented to determine the charge carrier concentration and its lateral distribution in n-type (Si/Te) doped GaAs. The submitted results for Si-doped GaAs gave rise to questions concerning the interpretation of absorption mappings in wafers with high dislocation densities. GaAs substrates for optoelectronic devices are strongly affected by dislocations. Therefore further studies were conducted: absorption and Hall measurements were performed on GaAs:Si wafers with high and low dislocation densities. Absorption in Si-doped GaAs is far more complex than in Te-doped GaAs. It shows a co-dependency on charge carrier concentration and dislocation content which causes complications in the quantitative optical determination of the charge carrier concentration. Qualitatively, absorption mappings depict dislocations and variations of charge carrier concentration very well.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wellmann, P.J., Albrecht, A., Künecke, U., Birkmann, B., Mueller, G., Jurisch, M., Eur. Phys. J. Appl. Phys. 27, 357 (2004) CrossRef
Weingärtner, R., Wellmann, P.J., Bickermann, M., Hofmann, D., Straubinger, T.L., Winnacker, A., Appl. Phys. Lett. 80, 70 (2002) CrossRef
Wellmann, P.J., Weingärtner, R., Mat. Sci. Eng. B 102, 262 (2003) CrossRef
Domke, C., Ebert, Ph., Heinrich, M., Urban, K., Phys. Rev. B 54, 10288 (1996) CrossRef
Domke, C., Ebert, Ph., Urban, K., Phys. Rev. B 57, 4482 (1998) CrossRef
Birkmann, B., Weingärtner, R., Wellmann, P., Wiedemann, B., Müller, G., J. Cryst. Growth 237–239, 345 (2002) CrossRef
Baeumler, M., Maier, M., Herres, N., Bünger, Th., Stenzenberger, J., Jantz, W., Mat. Sci. Eng. B 91–92, 16 (2002) CrossRef
Schuppler, S., Adler, D.L., Pfeiffer, L.N., West, K.W., Chaban, E.E., Citrin, P.H., Phys. Rev. B 51, 10527 (1995) CrossRef
Gebauer, J., Krause-Rehberg, R., Domke, C., Ebert, Ph., Urban, K., Phys. Rev. Lett. 78, 3334 (1997) CrossRef
Northrup, J.E., Zhang, S.B., Phys. Rev. B 47, 6791 (1993) CrossRef
Gebauer, J., Weber, E.R., Appl. Phys. Lett. 82, 2059 (2003) CrossRef
Weyher, J.L., van der Wel, P.J., Frigerl, C., Semicond. Sci. Tech. 7, A294 (1992) CrossRef
Paetzold, O., Irmer, G., Monecke, J., Griehl, S., J. Raman Spectrosc. 24, 761 (1993) CrossRef
Paetzold, O., Sonnenberg, K., Irmer, G., Mat. Sci. Eng. B 44, 217 (1997) CrossRef
Paetzold, O., Sonnenberg, K., Irmer, G., Inst. Phys. Conf. Ser. 160, 119 (1997)
Hill, D.E., Phys. Rev. A 133, 866 (1964) CrossRef
Casey Jr, H.C.., D.D. Sell, K.W. Wecht, J. Appl. Phys. 46, 250 (1975) CrossRef