Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-20T19:40:40.912Z Has data issue: false hasContentIssue false

A kinetic formulation of piezoresistance in N-type silicon: Application tonon-linear effects

Published online by Cambridge University Press:  15 July 1999

A. R. Charbonnieras
Affiliation:
Laboratoire de Chronométrie Électronique et Piezoélectricité, École Nationale Supérieure de Mécanique et des Microtechniques, 26 chemin de l'Épitaphe, 25030 Besançon Cedex, France
C. R. Tellier*
Affiliation:
Laboratoire de Chronométrie Électronique et Piezoélectricité, École Nationale Supérieure de Mécanique et des Microtechniques, 26 chemin de l'Épitaphe, 25030 Besançon Cedex, France
Get access

Abstract

This paper is devoted to the theoretical study of the influence of the temperature and of the doping on the piezoresistance of N-type silicon. In the first step the fractional change in the resistivity caused by stresses is calculated in the framework of a multivalley model using a kinetic transport formulation based on the Boltzmann transport equation. In the second step shifts in the minima of the conduction band and the resulting shift of the Fermi level are expressed in terms of deformation potentials and of stresses. General expressions for the fundamental linear, π11 and π12, and non-linear, π111, π112, π122 and π123, piezoresistance coefficients are then derived. Plots of the non-linear piezoresistance coefficients against the reduced shift of the Fermi level or against temperature allow us to characterize the influence of doping and temperature. Finally some attempts are made to estimate the non-linearity for heavily doped semiconductor gauges.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Tellier, C.R., Durand, S., Sens. Actuators A 60, 168 (1997). CrossRef
Frank, R., Sens. Actuators A 28, 93 (1991). CrossRef
Söderkvist, J., Sens. Actuators A 43, 65 (1994). CrossRef
Kuehnel, W., Sherman, S., Sens. Actuators A 45, 7 (1994). CrossRef
Smith, C.S., Solid State Phys. 6, 175 (1958). CrossRef
Keyes, R.W., Phys. Rev. 100, 149 (1959).
Kanda, Y., IEEE Trans. Electr. Dev. 29, 64 (1982). CrossRef
Lenkkeri, J.T., Stat. Sol. (b) 136, 373 (1986). CrossRef
Matsuda, K., Kanda, Y., Yamamura, K., Suzuki, K., Jpn J. Appl. Phys. 29, L1941 (1990). CrossRef
Kanda, Y., Sens. Actuators A 28, 83 (1991). CrossRef
Matsuda, K., Suzuki, K., Yamamura, K., Kanda, Y., Jpn J. Appl. Phys. 73, 1838 (1993). CrossRef
Durand, S., Tellier, C.R., J. Phys. III France 6, 237 (1996). CrossRef
Mason, W.P., Thurston, R.N., J. Acoust. Soc. Am. 29, 1096 (1957). CrossRef
Pfann, W.G., Thurston, R.N., J. Appl. Phys. 32, 2008 (1961). CrossRef
J.M. Ziman, Electrons and Phonons (Oxford University Press, London, 1960), Chap. X.
Herring, C., Vogt, E., Phys. Rev. 101, 944 (1956). CrossRef
Morin, F.J., Geballe, T.H., Herring, C., Phys. Rev. 105, 525 (1957). CrossRef
Tufte, O.N., Stelzer, F.L., Phys. Rev. 133, A1705 (1964). CrossRef
W.P. Mason, in Physical Acoustics (Academic Press, New York, 1960), Vol. 1, pp. 194-214.
S.M. Sze, Physics of semiconductor devices (John Wiley and Sons, London, 1981), pp. 850-851.
A. Many, Y. Goldstein, N.B. Grover, Semiconductor surfaces (North-Holland Publ., Amsterdam, 1965), Chap. 2.