Hostname: page-component-7bb8b95d7b-dvmhs Total loading time: 0 Render date: 2024-09-11T06:05:41.159Z Has data issue: false hasContentIssue false

Microstructures and dielectric properties of CaCu3Ti4O12 ceramics via combustion method

Published online by Cambridge University Press:  02 December 2011

W.X. Yuan*
Affiliation:
Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
Z.J. Li
Affiliation:
Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
Get access

Abstract

CaCu3Ti4O12 (CCTO) powder was synthesized by the combustion method. The effect of sintering temperature was studied on dielectric properties of the prepared ceramic samples. They have the dielectric constant of ~31 000 and 80 000 for the grain size of 0.3 and 30–100 μm. It is unusual for CCTO with a grain size of 0.3 μm to have a dielectric constant of ~31 000. Their giant dielectric constant could be explained by a two-step internal-barrier-layer-capacitor model, associated with grain boundaries and domain boundaries. The existence of domain boundaries helped to explain the contradiction of the dielectric mechanisms between polycrystalline and single-crystal CCTO.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Subramanian, M.A., Li, D., Duan, N., Reisner, B.A., Sleight, A.W., J. Solid State Chem. 151, 323 (2000)CrossRef
Ramirez, A.P., Subramanian, M.A., Gardel, M., Blumberg, G., Li, D., Vogt, T., Shapiro, S.M., Solid State Commun. 115, 217 (2000)CrossRef
Homes, C.C., Vogt, T., Shapiro, S.M., Wakimoto, S., Ramirez, A.P., Science 293, 673 (2001)CrossRef
Sinclair, D.C., Adams, T.B., Morrison, F.D., West, A.R., Appl. Phys. Lett. 80, 2153 (2002)CrossRef
Adams, T.B., Sinclair, D.C., West, A.R., Adv. Mater. 14, 1321 (2002)3.0.CO;2-P>CrossRef
Li, J., Subramanian, M.A., Rosenfeld, H.D., Jones, C.Y., Toby, B.H., Sleight, A.W., Chem. Mater. 16, 5223 (2004)CrossRef
Adams, T.B., Sinclair, D.C., West, A.R., Phys. Rev. B 73, 094124 (2006)CrossRef
Li, W., Schwartz, R.W., Appl. Phys. Lett. 89, 242906 (2006)CrossRef
Chung, S.Y., Appl. Phys. Lett. 87, 052901 (2005)CrossRef
Krohns, S., Lunkenheimer, P., Ebbinghaus, S.G., Loidl, A., Appl. Phys. Lett. 91, 022910 (2007)CrossRef
Lunkenheimer, P., Krohns, S., Riegg, S., Ebbinghaus, S.G., Reller, A., Loidl, A., Eur. Phys. J. Special Topics 180, 61 (2010)CrossRef
Ferrarelli, M.C., Sinclair, D.C., West, A.R., Dabkowska, H.A., Dabkowski, A., Luke, G.M., J. Mater. Chem. 19, 5916 (2009)CrossRef
Liu, J.J., Smith, R.W., Mei, W.N., Chem. Mater. 19, 6020 (2007)CrossRef
Fang, T.T., Liu, C.P., Chem. Mater. 17, 5167 (2005)CrossRef
West, A.R., Adams, T.B., Morrison, F.D., Sinclair, D.C., J. Eur. Ceram. Soc. 24, 1439 (2004)CrossRef
Jha, P., Arora, P., Ganguli, A.K., Mater. Lett. 57, 2443 (2003)CrossRef
Brizé, V., Gruener, G., Wolfman, J., Fatyeyeva, K., Tabellout, M., Gervais, M., Gervais, F., Mater. Sci. Eng. B 129, 135 (2006)CrossRef
Birey, H., J. Appl. Phys. 49, 2898 (1978)CrossRef
Singh, P., Kumar, D., Parkash, O., J. Appl. Phys. 97, 074103 (2005)CrossRef
Fang, L., Shen, M.R., Cao, W.W., J. Appl. Phys. 95, 6483 (2004)CrossRef
Sun, D.L., Wu, A.Y., Yin, S.T., J. Am. Ceram. Soc. 90, 4009 (2007)
Samara, G.A., Boatner, L.A., Phys. Rev. B 61, 3889 (2000)CrossRef
Ang, C., Yu, Z., Cross, L.E., Phys. Rev. B 62, 22 (2000)CrossRef