Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-07-04T18:26:22.811Z Has data issue: false hasContentIssue false

A model for the open circuit voltage relaxation inCu(In,Ga)Se2 heterojunction solar cells

Published online by Cambridge University Press:  15 October 1999

Th. Meyer
Affiliation:
Faculty of Physics, University of Oldenburg, 26111 Oldenburg, Germany
M. Schmidt
Affiliation:
Faculty of Physics, University of Oldenburg, 26111 Oldenburg, Germany
F. Engelhardt
Affiliation:
Faculty of Physics, University of Oldenburg, 26111 Oldenburg, Germany
J. Parisi
Affiliation:
Faculty of Physics, University of Oldenburg, 26111 Oldenburg, Germany
U. Rau*
Affiliation:
Institut für Physikalische Elektronik, Universität Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
Get access

Abstract

This article investigates the electronic transport properties of ZnO/ CdS/ Cu(In,Ga)Se2 heterojunction solar cells during and after illumination or forward bias in the dark. We observe a relaxation of the open circuit voltage under constant illumination as well as a relaxation of the voltage drop over the device under constant forward bias current in the dark. Both phenomena are accompanied by an increase of the sample capacitance. We introduce a general quantitative model concept for the open circuit voltage relaxation and related effects in heterojunction devices that explains the phenomena as a consequence of the persistent capture of charge carriers within the space charge region. We apply our concept to develop a specific quantitative model for the observed metastablity in Cu(In,Ga)Se2 heterojunction solar cells.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bube, R., J. Appl. Phys. 31, 2239 (1960). CrossRef
Aukerman, L., Davis, P., Graft, R., Shilliday, T., J. Appl. Phys. 34, 3590 (1963). CrossRef
Lang, D., Logan, R., Jaros, M., Phys. Rev. B 19, 1015 (1979). CrossRef
Johnson, C., Lin, J.Y., Jiang, H.X., Khan, M.A., Sun, C.J., Appl. Phys. Lett. 68, 1808 (1996). CrossRef
Hirsch, M.T., Wolk, J., Walukiewicz, W., Haller, E.E., Appl. Phys. Lett. 71, 1098 (1997). CrossRef
Rau, U., Schmitt, M., Parisi, J., Riedl, W., Karg, F., Appl. Phys. Lett. 73, 223 (1998). CrossRef
Karg, F., Calwer, H., Rimmasch, J., Probst, V., Riedl, W., Stetter, W., Vogt, H., Lampert, M., Inst. Phys. Conf. Ser. 152, 909 (1998).
Staebler, D., Wronski, C., Appl. Phys. Lett. 31, 292 (1977). CrossRef
Ruberto, M.N., Rothwarf, A., J. Appl. Phys. 61, 4662 (1987). CrossRef
R.A. Sasala, J.R. Sites, in 23rd IEEE Photovoltaics Specialists Conference (IEEE, New York, 1993), p. 543.
Engelhardt, F., Schmidt, M., Meyer, Th., Seifert, O., Parisi, J., Riedl, W., Karg, F., Schmitt, M., Rau, U., Inst. Phys. Conf. Ser. 152, 979 (1998).
M. Igalson, R. Bacewicz, in Proc. 12th European Photovoltaic Energy Conference, edited by R. Hill, W. Palz, P. Helm (Stephens, Bedford, UK, 1994), p. 1584.
Igalson, M., Bacewicz, R., Cryst. Res. Technol. 31, 445 (1996).
Igalson, M., Schock, H.W., J. Appl. Phys. 80, 5765 (1996). CrossRef
Kojima, T., Koyanagi, T., Nakamura, K., Yanagisawa, T., Takahisa, K., Nishitani, M., Wada, T., Solar Energy Mat. Solar Cells 50, 87 (1998). CrossRef
Herberholz, R., Rau, U., Schock, H.W., Haalboom, T., Gödecke, T., Ernst, F., Beilharz, C., Benz, K.W., Cahen, D., Eur. Phys. J. AP 6, 131 (1999). CrossRef
Herberholz, R., Nadenau, V., Rühle, U., Köble, C., Schock, H.W., Dimmler, B., Solar Energy Mat. Solar Cells 49, 227 (1997). CrossRef
Engelhardt, F., Schmidt, M., Meyer, Th., Seifert, O., Parisi, J., Rau, U., Phys. Lett. A 245, 489 (1998). CrossRef
Seifert, O., Engelhardt, F., Meyer, Th., Hirsch, M.T., Parisi, J., Beilharz, C., Schmitt, M., Rau, U., Inst. Phys. Conf. Ser. 152, 253 (1998).
Th. Meyer, M. Schmidt, R. Harney, F. Engelhardt, O. Seifert, J. Parisi, M. Schmitt, U. Rau, in 26th IEEE Photovoltaic Specialists Conference (IEEE, New York, 1998), p. 371.
Walter, T., Herberholz, R., Schock, H.W., Solid State Phenom. 51-52, 309 (1996). CrossRef
Probst, V., Karg, F., Rimmasch, J., Riedl, W., Stetter, W., Harms, H., Eibl, O., Mat. Res. Soc. Proc. 426, 833 (1996). CrossRef
M. Schmitt, Ph.D. thesis, University of Bayreuth, 1998.
F. Engelhardt, L. Bornemann, M. Köntges, Th. Meyer, J. Parisi, E. Pschorr-Schoberer, B. Hahn, W. Gebhardt, W. Riedl, U. Rau, Prog. Photovolt. Res. Appl. (in print).
Sah, C., Noyce, R.N., Shockley, W., Proc. IRE 45, 1228 (1957). CrossRef
Th. Meyer, Ph.D. thesis, University of Oldenburg, 1999; http://www.bis.uni-oldenburg.de/dissertation/
Herberholz, R., Igalson, M., Schock, H.W., J. Appl. Phys. 83, 318 (1998). CrossRef
R.H. Bube, Photoelectronic properties of semiconductors (Cambridge University Press, Cambridge, 1992).
U. Rau, A. Jasenek, H.W. Schock, F. Engelhardt, Th. Meyer, in Proc. of the E-MRS Spring Meeting 1999, to appear in Thin Solid Films.
Rau, U., Appl. Phys. Lett. 74, 111 (1999). CrossRef
V. Nadenau, U. Rau, A. Jasenek, H.W. Schock (unpublished).
Crowell, C.R., Sze, S.M., Solid-St. Electron. 9, 1035 (1966). CrossRef
E.H. Rhoderick, R.H. Williams, Metal-Semiconductor Contacts, 2nd edn. (Clarendon Press, Oxford, 1988), p. 101.
Gremenok, V., Zaretskaya, E., Bodnar, I., Victorov, I., Jap. J. Appl. Phys. 32, 90 (1993). CrossRef
V. Gremenok (private communication, 1997).