Hostname: page-component-84b7d79bbc-c654p Total loading time: 0 Render date: 2024-07-28T03:23:15.914Z Has data issue: false hasContentIssue false

Nano-droplet ejection and nucleation of materials submitted to non-thermal plasma filaments

Published online by Cambridge University Press:  28 October 2011

J.-P. Borra*
Affiliation:
Laboratoire de Physique des Gaz et Plasmas CNRS, Université Paris-Sud, 91405 Orsay, France Supélec, 3 Rue Joliot Curie, 91192 Gif-sur-Yvette, France
N. Jidenko
Affiliation:
Laboratoire de Physique des Gaz et Plasmas CNRS, Université Paris-Sud, 91405 Orsay, France Supélec, 3 Rue Joliot Curie, 91192 Gif-sur-Yvette, France
C. Dutouquet
Affiliation:
INERIS Parc Technologique ALATA, BP No 2, 60550 Verneuil-en-Halatte, France
O. Aguerre
Affiliation:
INERIS Parc Technologique ALATA, BP No 2, 60550 Verneuil-en-Halatte, France
J. Hou
Affiliation:
Institute for Mechanical Process Engineering, Clausthal University of Technology, Zellerfeld, Germany
A. Weber
Affiliation:
Institute for Mechanical Process Engineering, Clausthal University of Technology, Zellerfeld, Germany
Get access

Abstract

Methods to induce non-thermal atmospheric pressure plasma filaments are presented with related properties for micro, streamer and prevented spark discharges, respectively, induced in planar Dielectric Barrier Discharges with one electrode covered by dielectric material (mono-DBD) or point-to-plane Corona. Two mechanisms of nano-particles formation are depicted from aerosol size distributions and TEM analysis. 0.1–10 mJ prevented spark discharges produce 10–100 nm droplets ejected from melted craters as well as nucleated primary particles and subsequent 10–100 nm agglomerates, by nucleation and coagulation in expanding vapor jets. With smaller energy per filament, 0.1–10 μJ micro-discharges and 0.1–100 μJ streamers, the initial local vapor fluxes emitted from spots of interaction between plasma filaments and electrodes are reduced. Subsequent smaller primary particle density limits the local coagulation in the vapor plume since 2–10 nm non-agglomerated crystalline metal nano-particles are produced in mono-DBD with Au, Ag and Cu electrode. Besides, the evolution of the aerosol size from primary nano-particles to agglomerates with transit time suggests slow coagulation of these primary metal particles in mono-DBD. Aerosol properties depend on the energy per filament and on the electrode. The final size is controlled by plasma parameters and transit time in and after the plasma. The aim is to underline emerging applications of atmospheric pressure plasmas for the production of tailored particles with tunable size, composition and structure with non-thermal plasma filaments to control the resulting properties of nano-powders and materials. Production rates and related energetic yields are compared.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kodas, T.T., Hampden-Smith, M., Aerosol Processing of Materials (Wiley-VCH, New York, 1999)Google Scholar
Boulos, M., Pfender, E., MRS Bull. 21 8, 65 (1996)CrossRef
Dekkers, P.J., Friedlander, K., J. Colloid Interface Sci. 248, 295 (2002)CrossRef
Horvath, H., Gangl, M., J. Aerosol Sci. 34, 1581 (2003)CrossRef
Jidenko, N., Borra, J.-P., J. Phys. D: Appl. Phys. 39 2, 281 (2006)CrossRef
Byeon, J.H., Park, J.H., Hwang, J., J. Aerosol Sci. 39 10, 888 (2008)CrossRef
Borra, J.-P., Plasma Phys. Control Fusion 50, 124036 (2008)CrossRef
Bau, S., Witchger, O., Gensdarmes, F., Thomas, D., Borra, J.-P., J. Nanopart. Res. 12, 1989 (2010)CrossRef
Tatoulian, M., Arefi-Khonsari, F., Amouroux, J., Chem. Mater. 18, 5860 (2006)CrossRef
Mizuno, A., Plasma Phys. Control Fusion 49, 1 (2007)CrossRef
Sano, N., Wang, H., Chhowalla, M., Naito, M., Kanki, T., Chem. Phys. Lett. 368, 331 (2003)CrossRef
Odic, E., Parisi, L., Goldman, M., Borra, J.P., in Electrical Discharges for Environmental Purposes, edited by Van Veldhuizen, E.M. (NOVA Science Publishers, New York, 2000), pp. 279312Google Scholar
Jidenko, N., Massines, F., Jimenez, C., Borra, J.-P., J. Phys. D: Appl. Phys. 40 14, 4155 (2007)CrossRef
Gonzales-Aguilar, J., Moreno, M., Fulcheri, L., J. Phys. D: Appl. Phys. 40, 2361 (2007)CrossRef
Goldman, M., in Gaseous Electronics, edited by Hirsh, N.M., Oskam, H.J. (Academic Press, New York, 1978), pp. 219290CrossRefGoogle Scholar
Heuser, C., Pietsch, G., in IEEE Proc. of the 6th Int. Conf. Gas Discharges, vol. 1 (Edinburgh, UK, 1980), pp. 98101
Petit, M., Jidenko, N., Goldman, A., Goldman, M., Borra, J.-P., Rev. Sci. Instrum. 73 7, 2705 (2002)CrossRef
Marode, E., Samson, S., Djermoune, D., Deschamps, N., Touzeau, M., DeSouza, A.R., J. Adv. Ox. Tech. 4 3, 305 (1999)
Marode, E., in Proceedings of the Second International Symposium on Non-Thermal Plasma Technology for Gaseous Pollution Control, edited by Chang, J.S., Ferreira, J.L. (Catholic University of Brasilia Press, Brasilia, 1997), pp. 107112Google Scholar
Willeke, K., Baron, P., Aerosol Measurement (Van Nostrand Reinhold, New York, 1993)Google Scholar
Hinds, W.C., Aerosol Technology, 2nd edn. (Wiley, New York, 1999)Google Scholar
Hou, J., Jidenko, N., Borra, J.-P., Weber, A.P., Chem. Ing. Tech. (to be published)
Gray, E., Pharney, J.R., J. Appl. Phys. 45 2, 667 (1974)CrossRef