Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-30T08:40:39.813Z Has data issue: false hasContentIssue false

Nanostructural defects evidenced in failing silicon-based NMOS capacitors by advanced failure analysis techniques

Published online by Cambridge University Press:  21 April 2014

Emilie Faivre
Affiliation:
Aix-Marseille Université, CNRS, IM2NP UMR 7334, Avenue Escadrille Normandie Niemen, 13397 Marseille Cedex 20, France STMicroelectronics, Avenue C′elestin Coq, 13106 Rousset, France
Roxane Llido
Affiliation:
STMicroelectronics, Avenue C′elestin Coq, 13106 Rousset, France
Magali Putero
Affiliation:
Aix-Marseille Université, CNRS, IM2NP UMR 7334, Avenue Escadrille Normandie Niemen, 13397 Marseille Cedex 20, France
Lahouari Fares
Affiliation:
STMicroelectronics, Avenue C′elestin Coq, 13106 Rousset, France
Christophe Muller*
Affiliation:
Aix-Marseille Université, CNRS, IM2NP UMR 7334, Avenue Escadrille Normandie Niemen, 13397 Marseille Cedex 20, France
Get access

Abstract

An experimental methodology compliant with industrial constraints was deployed to uncover the origin of soft breakdown events in large planar silicon-based NMOS capacitors. Complementary advanced failure analysis techniques were advantageously employed to localize, isolate and observe structural defects at nanoscale. After an accurate localization of the failing area by optical beam-induced resistance change (OBIRCH), focused ion beam (FIB) technique enabled preparing thin specimens adequate for transmission electron microscopy (TEM). Characterization of the gate oxide microstructure was performed by highresolution TEM imaging and energy-filtered spectroscopy. A dedicated experimental protocol relying on iterative FIB thinning and TEM observation enabled improving the quality of electron imaging of defects at atom scale. In that way, the gate oxide integrity was evaluated and an electrical stress-induced silicon epitaxy was detected concomitantly to soft breakdown events appearing during constant voltage stress. The growth of silicon hillocks enables consuming a part of the breakdown energy and may prevent the soft breakdown event to evolve towards a hard breakdown that is catastrophic for device functionality.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Stathis, J.-H., IEEE Trans. Device Mater. Relib. 1, 43 (2001)CrossRef
Briere, O., Barla, K., Halimaoui, A., Ghibaudo, G., Solid- State Electron. 41, 987 (1997)CrossRef
Nikawa, K., Saiki, T., Inoue, S., Ohtsu, M., Appl. Phys. Lett. 74, 1048 (1999)CrossRef
Erni, R., Aberration-Corrected Imaging in Transmission Electron Microscopy, 1st edn. (Imperial College Press, London, 2010)CrossRefGoogle Scholar
Fultz, B., Howe, J., in Transmission Electron Microscopy and Diffractometry of Materials, edited by Fultz, B. and Howe, J., 4th edn. (Springer, Berlin, 2013)CrossRefGoogle Scholar
Egerton, R.F., Rep. Prog. Phys. 72, 016502-1, (2009)CrossRef
Sun, Y., Pey, K.L., Tung, C.H., Lombardo, S., Palumbo, F., Tang, L.J., Radhakrishnan, M.K., in IEEE Proceedings of 11th International Symposium on Physical and Failure Analysis of Integrated Circuits, Taiwan, 2004, p. 57
Wu, E.Y., Suñé, J., Electron Device Lett. 26, 401 (2005)CrossRef
Degraeve, R., Groeseneken, G., Bellens, R., Depas, M., Maes, H.E., in IEEE Proceedings of International Electron Devices Meeting, Washington DC, 1995, p. 34.5.1
Stathis, J.H., Microelectron. Eng. 36, 325 (1997)CrossRef
Suñé, J., Electron Device Lett. 22, 296 (2001)CrossRef
Stathis, J.H., in IEEE Proceedings of International Conference on Microelectronics, Belgrade, 2005, p. 78
Degraeve, R., Groeseneken, G., Bellens, R., Ogier, J.-L., Depas, M., Roussel, P.J., Maes, H.E., IEEE Trans. Electron Devices 45, 904 (1998)CrossRef
Miranda, E., Suñé, J., Rodriguez, R., Nafria, M., Aymerich, X., Fonseca, L., Campabadal, F., IEEE Trans. Electron Devices 47, 82 (2000)CrossRef
Miranda, E., Suñé, J., in Proceedings of International Reliability Physics Symposium, Orlando, 2001, p.367
Ranjan, R., Pey, K.L., Tung, C.H., Tang, L.J., Groeseneken, G., Bera, L.K., De Gendt, S., in IEEE Proceedings of International Electron Devices Meeting, San Francisco, 2004, p. 725
Shubhakar, K., Pey, K.L., Raghavan, N., Kushvaha, S.S., Bosman, M., Wang, Z., O’Shea, S.J., Microelectron. Eng. 109, 364 (2013)CrossRef
Tung, C.H., Pey, K.L., Tang, L.J., Radhakrishnan, M.K., Lin, W.H., Palumbo, F., Lombardo, S., Appl. Phys. Lett. 83, 2223 (2003)CrossRef
Zschech, E., Langer, E., Engelmann, H.J., Dittmar, K., Mater. Sci. Semicond. Process. 5, 457 (2003)CrossRef
Pey, K.L., Tung, C.H., Radhakrishnan, M.K., Tang, L.J., Lin, W.H., in IEEE Proceedings of International Electron Devices Meeting, San Francisco, 2002, p. 163
Tung, C.H., Pey, K.L., Lin, W.H., Radhakrishnan, M.K., Electron Device Lett. 23, 526 (2002)CrossRef
Pey, K.L., Ranjan, R., Tung, C.H., Tang, L.J., Lin, W.H., Radhakrishnan, M.K., in IEEE Proceedings of International Reliability Physics Symposium, Phoenix, 2004, p. 117
Tang, L.J., Pey, K.L., Tung, C.H., Ranjan, R., Lin, W.H., Microelectron. Eng. 80, 170 (2005)CrossRef
Tung, C.H., Pey, K.L., Tang, L.J., Cao, Y., Radhakrishnan, M.K., Lin, W.H., IEEE Trans. Electron Devices 52, 473 (2005)CrossRef
Pey, K.L., Tung, C.H., Ranjan, R., Lo, V.L., MacKenzie, M., Craven, A.J., IJNT 4, 347 (2007)CrossRef
Lombardo, S., Stathis, J.H., Linder, B.P., Pey, K.-L., Palumbo, F., Tung, C.-H., J. Appl. Phys. 98, 121301 (2005)CrossRef
DiMaria, D.J., J. Appl. Phys. 86, 2100 (1999)CrossRef