Hostname: page-component-84b7d79bbc-4hvwz Total loading time: 0 Render date: 2024-07-28T06:28:17.451Z Has data issue: false hasContentIssue false

Particulate growth in a 13.56 MHz radiofrequency methane plasma: influence of the flow rate and the incident rf power

Published online by Cambridge University Press:  15 June 2001

I. Géraud-Grenier*
Affiliation:
LASEP, Faculté des Sciences, Université d'Orléans, Site de Bourges, rue G. Berger, BP 4043, 18028 Bourges Cedex, France
V. Massereau-Guilbaud
Affiliation:
LASEP, Faculté des Sciences, Université d'Orléans, Site de Bourges, rue G. Berger, BP 4043, 18028 Bourges Cedex, France
A. Plain
Affiliation:
LASEP, Faculté des Sciences, Université d'Orléans, Site de Bourges, rue G. Berger, BP 4043, 18028 Bourges Cedex, France
Get access

Abstract

The generation and the behavior of amorphous hydrogenated carbon particulates in a pure methane rf discharge have been studied for different methane flow rates (2−14 sccm) and different incident rf powers (40−120 W). Laser light scattering provides informations on their localization in the discharge. The 90° laser light scattered is used to determine the appearance times. The higher the incident rf power, the shorter the particulate appearance time: conversely the higher the methane flow rate, the higher the appearance time. The appearance times have been correlated to the inverse of the residence times of CH4 molecules. Good correlations have been observed between the particulate generation and the time evolutions of both laser beam extinction and dc self bias voltage. Whatever our experimental conditions, the influence of the methane flow rate seems lower than the rf power one. An increase of the rf power leads to a more important generation of particulates in the plasma.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dekempeneer, E.H.A., Smeets, J., Meneve, J., Eersels, L., Jacobs, R., Thin Solid Films 241, 269 (1994). CrossRef
Dagel, D.J., Mallouris, C.M., Doyle, J.R., J. Appl. Phys. 79, 8735 (1996). CrossRef
Jellum, G.M., Graves, D.B., J. Appl. Phys. 67, 6490 (1990). CrossRef
Smadi, M.M., Kong, G.Y., Carlile, R.N., Beck, S.E., J. Vac. Sci. Technol. B 10, 30 (1992). CrossRef
L. Spitzer, Physical Processes in the Interstellar Medium (Wiley, New York, 1978).
Bouchoule, A., Plain, A., Boufendi, L., Blondeau, J.Ph., Laure, C., J. Appl. Phys. 70, 1991 (1991). CrossRef
Watanabe, Y., Shiratani, M., Kawasaki, H., Singh, S., Fukusawa, T., Ueda, Y., Ohkura, H., J. Vac. Sci. Technol. A 14, 540 (1996). CrossRef
Childs, M.A., Gallagher, A., J. Appl. Phys. 87, 1076 (2000). CrossRef
Jellum, G.M., Daugherty, J.E., Graves, D.B., J. Appl. Phys. 69, 6923 (1991). CrossRef
Massereau-Guilbaud, V., Géraud-Grenier, I., Plain, A., Eur. Phys. J. AP 11, 71 (2000). CrossRef
Géraud-Grenier, I., Massereau-Guilbaud, V., Plain, A., Eur. Phys. J. AP 8, 53 (1999). CrossRef
Matsoukas, T., Russel, M., J. Appl. Phys. 77, 4285 (1985). CrossRef
Goree, J., Plasma Sources Sci. Technol. 3, 400 (1994). CrossRef
Melzer, A., Trottenberg, T., Piel, A., Phys. Lett. A 191, 301 (1994). CrossRef
Watanabe, Y., Shiratani, M., Fukusawa, T., Kawasaki, H., Plasma Sources Sci. Technol. 3, 355 (1994). CrossRef
Marotta, E., Bakhru, N., Grill, A., Patel, V., Meyerson, B., Thin Solid Films 206, 188 (1991). CrossRef
Rhallabi, A., Catherine, Y., IEEE Trans. Plasma Sci. 19, 270 (1991); A. Rhallabi, Ph.D. thesis, University of Nantes, France, 1992. CrossRef
H. Videlot, Thesis, University of Paris XI (1999).
Meyerson, B., Smith, F.W., J. Non-Cryst. Solids 35-36, 435 (1980). CrossRef