Hostname: page-component-84b7d79bbc-2l2gl Total loading time: 0 Render date: 2024-07-30T00:54:42.650Z Has data issue: false hasContentIssue false

Reflection and transmission of optical narrow-extent pulses by axially excited chiral sculptured thin films

Published online by Cambridge University Press:  15 January 2001

J. B. Geddes III*
Affiliation:
CATMAS -Computational and Theoretical Materials Sciences Group, Department of Engineering Science and Mechanics, 212 Earth-Engineering Sciences Building, Pennsylvania State University, University Park, PA 16802-6812, USA
A. Lakhtakia
Affiliation:
CATMAS -Computational and Theoretical Materials Sciences Group, Department of Engineering Science and Mechanics, 212 Earth-Engineering Sciences Building, Pennsylvania State University, University Park, PA 16802-6812, USA
Get access

Abstract

Chiral sculptured thin films (STFs) have unidirectionally periodic electromagnetic constitutive properties and therefore exhibit the circular Bragg phenomenon. The time-domain Maxwell equations are solved using finite difference calculus in order to establish the spatiotemporal anatomy of the action of axially excited, chiral STF slabs on optical narrow-extent pulses (NEPs) modulating circularly polarized carrier waves. A Lorentzian model was adopted for the permittivity dyadics of the chiral STFs. The time-domain manifestation of the circular Bragg phenomenon is focussed on. First, on examining the refraction of NEPs by a chiral STF half-space, a light pipe and the pulse bleeding phenomenon are shown to occur -when the handednesses of the carrier wave and the chiral STF coincide and the carrier wavelength is in the vicinity of the center-wavelength of the Bragg regime. Next, pulse bleeding inside a chiral STF slab is shown to be responsible for the long wakes of reflected pulses and low energy contents of transmitted pulses, when the incident wave spectrums significantly overlap with the Bragg regime and the carrier waves have the same handedness as the chiral STF slab. Thus, a chiral STF slab can drastically affect the shapes, amplitudes, and spectral components of femtosecond pulses.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

P.G. de Gennes, J. Prost, The Physics of Liquid Crystals (Clarendon Press, Oxford, UK, 1993).
S.D. Jacobs, Selected Papers on Liquid Crystals for Optics (SPIE, Bellingham, WA, USA, 1992).
Lakhtakia, A., Messier, R., Mater. Res. Innov. 1, 145 (1997). CrossRef
Venugopal, V.C., Lakhtakia, A., Proc. Roy. Soc. London A 454, 1535 (1998); errata: 455, 4383 (1999). CrossRef
Venugopal, V.C., Lakhtakia, A., Proc. Roy. Soc. London A 456, 125 (2000). CrossRef
Messier, R., Lakhtakia, A., Mater. Res. Innov. 2, 217 (1999). CrossRef
Lakhtakia, A., Sens. and Actuators B: Chem. 52, 243 (1999). CrossRef
Wu, A.T., Seto, M., Brett, M.J., Sens. and Mater. 11, 493 (2000).
I. Hodgkinson, Q.H. Wu, A. Lakhtakia, R. Messier, OSA Opt. Photon. News 10, 30 (December 1999).
Wu, Q.h., Hodgkinson, I.J., Lakhtakia, A., Opt. Eng. 39, 1863 (2000). CrossRef
Hodgkinson, I.J., Q.h. Wu, A. Lakhtakia, M.W. McCall, Opt. Commun. 177, 79 (2000). CrossRef
Hodgkinson, I.J., Wu, Q.H., Appl. Opt. 38, 3621 (1999). CrossRef
Hodgkinson, I., Q.h. Wu, B. Knight, A. Lakhtakia, K. Robbie, Appl. Opt. 39, 642 (2000). CrossRef
M. Schubert, Thin Solid Films 313/314, 373 (1998).
Bhowmik, A.K., Optik 111, 103 (2000).
Sit, J.C., Broer, D.J., Brett, M.J., Adv. Mater. 12, 371 (2000). 3.0.CO;2-P>CrossRef
Lakhtakia, A., Eur. Phys. J. AP 8, 129 (1999). CrossRef
Lakhtakia, A., Venugopal, V.C., Arch. Elektr. Über. 53, 287 (1999).
Lakhtakia, A., Opt. Commun. 161, 275 (1999). CrossRef
T. Kamiya, Femtosecond Technology: From Basic Research to Future Applications (Springer, New York, NY, USA, 1999).
C. Kittel, Introduction to Solid State Physics (Wiley Eastern, New Delhi, India, 1974).
N. Gershenfield, The Nature of Mathematical Modeling (Cambridge Univ. Press, Cambridge, UK, 1999).
Venugopal, V.C., Lakhtakia, A., Opt. Commun. 145, 171 (1998); errata: 161, 370 (1999). CrossRef
J.W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, USA, 1968).
Sbanski, O., Roman, V.E., Kiefer, W., Popp, J., J. Opt. Soc. Am. A 17, 313 (2000). CrossRef
Ertekin, E., Lakhtakia, A., Eur. Phys. J. AP 5, 45 (1999). CrossRef