Hostname: page-component-7479d7b7d-t6hkb Total loading time: 0 Render date: 2024-07-16T02:16:08.755Z Has data issue: false hasContentIssue false

RF characterisation and modelling of AlGaAs/GaAs HBT for 1.8 GHz applications

Published online by Cambridge University Press:  15 September 1999

A. Cazarré*
Affiliation:
Laboratoire d'Analyse et d'Architecture des Systèmes du CNRS, 7 avenue du Colonel Roche, 31077 Toulouse Cedex 4, France
J. Tasselli
Affiliation:
Laboratoire d'Analyse et d'Architecture des Systèmes du CNRS, 7 avenue du Colonel Roche, 31077 Toulouse Cedex 4, France
P. Souverain
Affiliation:
Laboratoire d'Analyse et d'Architecture des Systèmes du CNRS, 7 avenue du Colonel Roche, 31077 Toulouse Cedex 4, France
J. Verdier
Affiliation:
Laboratoire d'Analyse et d'Architecture des Systèmes du CNRS, 7 avenue du Colonel Roche, 31077 Toulouse Cedex 4, France
A. Marty
Affiliation:
Laboratoire d'Analyse et d'Architecture des Systèmes du CNRS, 7 avenue du Colonel Roche, 31077 Toulouse Cedex 4, France
Get access

Abstract

For power applications, AlGaAs/GaAs heterojunction bipolar transistors (HBT's) were found to present high efficiency and linearity at high density RF power. We report power performances in S-band of a 6 × 60 µm2 one emitter finger HBT fabricated in our laboratory. At 1.8 GHz, when tuned for maximum efficiency, each transistor delivered a CW output power of 0.5 W (150 kW/cm2) and a power-added efficiency of 62% and 80% in class AB and C operation respectively. The physical model based on technological and measured parameters incorporates temperature dependence for most of its parameters. It has been easily used to analyse DC and RF power characteristics in class AB mode and to determine input and output optimum matching cells. Good agreement between simulated and experimental results support the validity of the model.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kobayashi, K.W., Microwave J. 112, 94 (1998).
Koning, U.L.F., Daimler Ben, A.G.z, IEEE BCTM 92, 87 (1998).
Mallet, A., Floriot, D., Viaud, J.P., Blache, F., Nebus, J.M., Delage, S., IEEE Microw. Guided Wave Lett. 6, 132 (1996). CrossRef
Toshihiko, Y., Mazanori, A., Noriyuki, T., Shinji, H., IEEE J. Solid State Circ. 33, 1290 (1998).
Bailbe, J.P., Andrieux, L., Cazarré, A., Camps, T., Marty, A., Solid State Electron. 38, 279 (1995). CrossRef
Andrieux, L., Cazarré, A., Bailbe, J.P., Marty, A., IEE Proc. Circ. Dev. Syst. 143, 352 (1996). CrossRef
Chan, H.F., Wilcox, G., Chen, W., Tutt, M., Henderson, T., IEEE Microw. Guided Wave Lett. 7, 288 (1997).
Kim, C.W., Hayama, N., Goto, N., Honjo, K., IEEE Electron Dev. Lett. 18, 147 (1997).
van Rijs, F., Visser, H.A, Magnée, P.H.C., IEEE IEDM 98, 957 (1998).