Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-24T10:24:11.971Z Has data issue: false hasContentIssue false

SERS-measured and DFT-calculated vibrational spectra of p-Aminoazobenzene

Published online by Cambridge University Press:  14 February 2007

Tingchao He
Affiliation:
Institute of Optics and Photoelectronic Technology, College of Physics and Information Optic-electronics, Henan University, Kaifeng 475004, China
Pengwei Li
Affiliation:
Institute of Optics and Photoelectronic Technology, College of Physics and Information Optic-electronics, Henan University, Kaifeng 475004, China
Zhipeng Cai
Affiliation:
Institute of Optics and Photoelectronic Technology, College of Physics and Information Optic-electronics, Henan University, Kaifeng 475004, China
Yujun Mo*
Affiliation:
Institute of Optics and Photoelectronic Technology, College of Physics and Information Optic-electronics, Henan University, Kaifeng 475004, China
Get access

Abstract

P-Aminoazobenzene (PAAB) is one of the 24 kinds of carcinogenic azo dyes that the European Union forbids but it does not yet have an official method to detect PAAB. This paper experimentally observes the Normal Raman Spectrum (NRS) and infrared absorption spectrum of PAAB and presents theoretical vibrational spectra calculated from a density functional theory (DFT) method on the basis of B3LYP with 6–31 basis set. The calculated results show very good agreement with the experimentally observed IR and Raman frequencies. We also report the SERS spectra of PAAB adsorbed on silver and copper layers, which offer a sensitive but simple method to detect PAAB. Finally, the possible adsorbed states of PAAB on the silver and copper layers are discussed.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wang, C.S., Fei, H.S., Qiu, Y., Yang, Y.Q., Wei, Z.Q., Tian, Y.Q., Chen, Y.M., Zhao, Y.Y., Appl. Phys. Lett. 74, 19 (1999) CrossRef
Wang, C.S., Fei, H.S., Yang, Y.Q., Wei, Z.Q., Qiu, Y., Chen, Y.M., Opt. Commun. 159, 58 (1999) CrossRef
Pan, L.Y., Yang, Q.X., Jin, M., Sun, G.J., Jiang, Z.K., J. Phys. D: Appl. Phys. 37, 1002 (2004) CrossRef
Veno, Y., Ajito, K., Maruo, Y.Y., Niwa, O., Torimitsu, K., Ichino, T., Appl. Spectrosc. 9, 1151 (2001)
Trotter, P.J., Appl. Spectrosc. 1, 30 (1977) CrossRef
Rao, A.M., Richter, E., Bandow, S.J., Chase, B., Eklund, P.C., Williams, K.A., Fang, S., Smalley, K.R., Menon, M., Thess, A., Smalley, R.E., Dresselhaus, G., Dresselhaus, M.S., Science 5297, 187 (1997) CrossRef
Mo, Y.J., Jiang, D.L., Uyemura, M., Aida, T., Kitagawa, T., J. Am. Chem. Soc. 127, 10020 (2005) CrossRef
Mo, Y.J., Li, X.Y., Zhang, P.X., Chinese Phys. Lett. 2, 413 (1985)
Mo, Y.J., Mattei, G., Pagannone, M., Xie, S.S., Appl. Phys. Lett. 66, 2591 (1995) CrossRef
Li, G.F.., H. Li, Y.J. Mo, X.J. Huang, L.Q. Chen, Chem. Phys. Lett. 330, 249 (2000) CrossRef
Nie, S., Emory, S.R., Science 275, 1102 (1997) CrossRef
Gao, Y., Zhang, Z.L., Bai, Y., Mo, Y.J., Chem. J. Chinese U. 10, 1920 (2004)
Mohandas, P., Umapathy, S., J. Phys. Chem. 101, 4449 (1997) CrossRef
Stepanian, S.G., Reva, I.D., Radchenko, E.D., Adamowicz, L., J. Phys. Chem. A 103, 4404 (1999) CrossRef
Biswas, N., Umapathy, S., J. Phys. Chem. A 101, 5555 (1997) CrossRef
Biswas, N., Umapathy, S., J. Phys. Chem. A 104, 2734 (2000) CrossRef
Moskovits, M., Suh, J.S., J. Am. Chem. Soc. 107, 6826 (1985) CrossRef
Moskovits, M., Rev. Mod. Phys. 57, 783 (1985) CrossRef