Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-22T06:18:35.103Z Has data issue: false hasContentIssue false

Simultaneous quantitative determination of strain and defect profiles within the active region along high-power diode laser bars by micro-photocurrent mapping

Published online by Cambridge University Press:  15 July 2004

A. Gerhardt*
Affiliation:
Max-Born Institut für nichtlineare Optik und Kurzzeitspektroskopie, Max Born Strasse 2A, 12489 Berlin, Germany
J. W. Tomm
Affiliation:
Max-Born Institut für nichtlineare Optik und Kurzzeitspektroskopie, Max Born Strasse 2A, 12489 Berlin, Germany
S. Schwirzke-Schaaf
Affiliation:
Max-Born Institut für nichtlineare Optik und Kurzzeitspektroskopie, Max Born Strasse 2A, 12489 Berlin, Germany
J. Nagle
Affiliation:
THALES Research & Technology, Domaine de Corbeville, 91404 Orsay Cedex, France
M. Oudart
Affiliation:
THALES Research & Technology, Domaine de Corbeville, 91404 Orsay Cedex, France
Y. Sainte-Marie
Affiliation:
THALES Research & Technology, Domaine de Corbeville, 91404 Orsay Cedex, France
Get access

Abstract

We present microscopically-resolved photocurrent spectroscopy as a new powerful analytical tool for the simultaneous detection of packaging-induced strain and defects in GaAs-based high-power laser diode arrays (cm-bars). Using the Fourier-transform (FT) technique we measure photocurrent (PC) spectra with a high spatial resolution of better than 50 μm at the active layer of the device. By analyzing this data, spatially resolved distributions of strain as well as of defects are obtained. So far, PC measurements at cm-bars have only provided an overview of the distribution of strain and defects in the device on an emitter-by-emitter scale. The high spatial resolution now allows examination of the distribution of strain and defects even within one single emitter. This is essential for obtaining insights into device failure mechanisms and also makes a substantial contribution for improving device performance and reliability.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Tomm, J. W., Müller, R., Bärwolff, A., Elsaesser, T., Lorenzen, D., Daiminger, F. X., Gerhardt, A., Donecker, J., Appl. Phys. Lett. 73, 3908 (1998) CrossRef
Tomm, J. W., Jaeger, A., Bärwolff, A., Elsaesser, T., Gerhardt, A., Donecker, J., Appl. Phys. Lett. 71, 2233 (1997) CrossRef
http://dbs.cordis.lu/fep-cgi/ search for IST-2000-29447
Tomm, J. W., Gerhardt, A., Müller, R., Malyarchuk, V., Sainte-Marie, Y., Galtier, P., Nagle, J., Landesman, J.-P., J. Appl. Phys. 93, 1354 (2003) CrossRef
Collot, P., Delalande, S., Olivier, J., Electron. Lett. 35, 506 (1999) CrossRef
Weiner, J. S., Chemla, D. S., Haus, D. A., Gossard, A. C., Wiegmann, W., Burrus, C. A., Appl. Phys. Lett. 47, 664 (1985) CrossRef
Tomm, J. W., Gerhardt, A., Müller, R., Biermann, M. L., Holland, J. P., Lorenzen, D., Kaulfersch, E., Appl. Phys. Lett. 82, 4193 (2003) CrossRef
Xia, R., Larkins, E.C., Harrison, I., Dods, S. R. A., Andrianov, A. V., Morgan, J. Landesman, J. P., Photon. Technol. Lett. 14, 893 (2002) CrossRef