Hostname: page-component-7479d7b7d-jwnkl Total loading time: 0 Render date: 2024-07-11T15:37:22.682Z Has data issue: false hasContentIssue false

Study of polarization parameters effect on dipolar relaxation in epoxy-based polymer using thermally stimulated depolarization current

Published online by Cambridge University Press:  03 March 2014

Emna Zghal
Affiliation:
Research Unit, Physics of Insulating and Semi-Insulating Materials, Faculty of Sciences, University of Sfax, B.P. 1171, 3000 Sfax, Tunisia
Fatma Namouchi*
Affiliation:
Research Unit, Physics of Insulating and Semi-Insulating Materials, Faculty of Sciences, University of Sfax, B.P. 1171, 3000 Sfax, Tunisia
Hajer Guermazi
Affiliation:
Research Unit, Physics of Insulating and Semi-Insulating Materials, Faculty of Sciences, University of Sfax, B.P. 1171, 3000 Sfax, Tunisia
Get access

Abstract

In this paper, dipolar relaxation processes in epoxy-based polymer were investigated under various polarization conditions, using thermally stimulated depolarization current (TSDC) technique. The TSDC spectrum of un-poled epoxy polymer reveals an unusual negative current, associated with a thermally generated charge carriers, which were due to impurities ionization and structural changes mainly at high temperature (above Tg). β and α dipolar relaxations were detected respectively around 115 °C and 154 °C in conventionally poled sample at TP=110 °C and EP= 3 kV/mm. Dipolar relaxation parameters were evaluated using two techniques: (1) theoretical decomposition of global complex TSDC spectrum, using Bucci-Fieschi expression based on single Debye process, (2) experimental procedure based on selective polarization, commonly known as windowing polarization (WP). The obtained values are TP dependent: relaxation time decreases and activation energy increases when polarization temperature increases. An ω relaxation peak due to water molecule departure was detected around 135 °C, using WP techniques for TP=100 °C Unlike dipolar relaxations, its position is independent of polarization temperature. Complementary thermal analysis investigations by differential scanning calorimetric (DSC) and thermogravimetric analysis (TGA), were made to support some given conclusions.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bardonnet, P., Résines époxydes (EP) composants et propriétés, traité Plastiques et Composites (Editions T.I, 1992), p. A3465Google Scholar
Smaoui, H., Guermazi, H., Agnel, S., Mlik, Y., Toureille, A., Schué, F., Polym. Intern. 52, 1287 (2003)CrossRef
May, CA., Epoxy Resins Chemistry and Technology (Marcel Dekker, New York, 1988)Google Scholar
Kinjo, N., Ogata, M., Nishi, K., Kaneda, A., Adv. Polym. Sci. 88, 1 (1989)CrossRef
Coelho, R., Aladenize, B., Les diélectriques : propriétés diélectriques des matériaux isolants, in Traité des nouvelles technologies, série matériaux, Hermès, Paris, 1993
Duc Hoang, N., PhD Thesis Université Joseph Fourier Grenoble 1, 2005
Smaoui, H., Arous, M., Guermazi, H., Agnel, S., Toureille, A., J. Alloys Compd. 489, 429 (2010)CrossRef
Toureille, A., Mesures électriques des matériaux diélectriques solides Vol. R1115v2 (Editions T.I., 2009)Google Scholar
Lee, J.Y., Song, Y.W., Kim, S.W., Lee, H.K., Mater. Chem. Phys. 77, 455460 (2002)CrossRef
Namouchi, F., Smaoui, H., Guermazi, H., Zerrouki, C., Fourati, N., Agnel, S., Toureille, A., Eur. Polym. J. 43, 4821 (2007)CrossRef
Joaquim, J., Moura, R., Natalia, T., Thermochim. Acta 426, 185 (2005)
Diego, J.A., Sellarès, J., Aragoneses, A., Mudarra, M., Canadas, J.C., J. Phys D: Appl. Phys. 40, 1138 (2007)CrossRef
Migahed, M.D., Ahmed, M.T., Kotp, A.E., J. Phys. D: Appl. Phys. 33, 2108 (2000)CrossRef
Mzabi, N., Smaoui, H., Guermazi, H., Mlik, Y., Agnel, S., Toureille, A., Am. J. Eng. Appl. Sci. 2, 120 (2009)
Belana, J., Canadas, J.C., Diego, J.A., Mudarra, M., Diaz-Calleja, R., Friederichs, S., Jaimes, C., Sanchis, M.J., Polym. Intern. 46, 11 (1998)3.0.CO;2-Z>CrossRef
Vanderschueren, J., Gasiot, J., in Topics in Applied Physics edited by Bräunlich, P. (Springer-Verlag, Berlin Heidelberg, New York, 1979), p. 135Google Scholar
Sessler, G.M., Topics in Applied Physics (Springer Verlag, Berlin, 1980)Google Scholar
Neagu, R.M., Neagu, E.R., Kalogeras, I.M., Vassilikou-Dova, A., Mat. Res. Innovat. 4, 115 (2001)CrossRef
Belana, J., Mudarra, M., Calaf, J., Canadas, J.C., Menéndez, E., IEEE Trans. Electr. Insul. 28, 287 (1993)CrossRef
Namouchi, F., Smaoui, H., Guermazi, H., Fourati, N., Zerrouki, C., Agnel, S., Toureille, A., Bonnet, J.J., Phys. Procedia 2, 961 (2009)CrossRef
Zielinski, M., Kryszewski, M., Phys. Status Solidi A 42, 305 (1977)CrossRef
Mudarra, M., Belana, J., Canadas, J.C., Diego, J.A., Polym. J. 40, 2659 (1999)CrossRef
Bucci, C., Fieshi, R., Phys. Rev. Lett. 12, 16 (1964)CrossRef
Joaquim, J., Moura, R., Hermino, P.D., Susana, S.P., J. Chem. Phys. 126, 144 (2007)
Ridzuan, M., Bisyrul Hafi, O., Hanafi, I., Zulkifi, A., Malaysian Polym. J. 4, 68 (2009)
Odegard, G.M., Bandyopadhyay, A., J. Polym. Sci. Part B: Polym. Phys. 49, 1695 (2011)CrossRef
Guermazi, H., Smaoui, H., Agnel, S., Mlik, Y., Toureille, A., Schué, F., Polym. Intern. 50, 743 (2001)CrossRef
Zouzou, N., PhD Thesis University Paul Sabatier Toulouse III, 2002
Viciosa Plaza, M.T., PhD Thesis University of Nova De Lisboa, 2007
Teyssedre, G., Demont, P., Lacabanne, C., J. Appl. Phys. 79, 9258 (1996)CrossRef
Teyssedre, G., Lacabanne, C., J. Phys. D 28, 1478 (1995)CrossRef
Jonscher, A.K., Universal Relaxation Law (Chelsea Dielectrics Press Ltd., London, 1996)Google Scholar
Wang, J.Y., Ploehn, H.J., J. Appl. Polym. Sci. 59, 345 (1996)3.0.CO;2-V>CrossRef
Boye, J., Demont, P., Lacabanne, C., J. Appl. Polym. Sci. 32, 1359 (1994)CrossRef