Hostname: page-component-84b7d79bbc-g7rbq Total loading time: 0 Render date: 2024-07-28T05:17:00.575Z Has data issue: false hasContentIssue false

Synthesis of aluminium indium nitride (AlInN) thin films by stacked elemental layers method

Published online by Cambridge University Press:  17 June 2014

Naveed Afzal*
Affiliation:
Nano Optoelectronics Research Laboratory, School of Physics, Universiti Sains Malaysia (USM) 11800, Pulau Pinang, Malaysia
Mutharasu Devarajan
Affiliation:
Nano Optoelectronics Research Laboratory, School of Physics, Universiti Sains Malaysia (USM) 11800, Pulau Pinang, Malaysia
Kamarulazizi Ibrahim
Affiliation:
Nano Optoelectronics Research Laboratory, School of Physics, Universiti Sains Malaysia (USM) 11800, Pulau Pinang, Malaysia
Get access

Abstract

AlInN thin films were synthesized on Si substrates by using stacked elemental layers (SEL) technique. Three stacking sequence Al/InN, Al/InN/Al/InN and Al/InN/Al/InN/Al/InN were prepared on Si (1 0 0) substrates by reactive RF sputtering of In target in Ar-N2 and DC sputtering of Al target in Ar atmosphere at room temperature. Annealing of the deposited stacks was carried out at 400 °C for 6 h in a three zone tube furnace. Structural properties of the annealed films were investigated using X-ray diffraction (XRD) whereas the surface analysis of the films was carried out using field emission scanning electron microscope (FESEM) and atomic force microscope (AFM). XRD results show the formation of wurtzite AlInN thin films which become more obvious with increasing the stacked layers. FESEM analysis reveals drops-like polycrystalline films structure with randomly oriented grains whereas the AFM results show a decrease in the surface roughness with increasing stacking sequence. The formation of more prominent AlInN films with increase of stacking layers is attributed to a uniform interaction among the top and bottom Al and InN multilayers as a result of the annealing.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Guo, Q., Tanaka, T., Nishio, M., Ogawa, H., Jpn J. Appl. Phys. 42, L141 (2003)CrossRef
Seppanen, T., Persson, P.O.A., Hultman, L., Birch, J., Radnoczi, G.Z., J. Appl. Phys. 97, 083503 (2005)CrossRef
Weng, W.Y., Chang, S.J., Hsueh, T.J., Hsu, C.L., Li, M.J., Lai, W.C., Sens. Actuators B 140, 139 (2009)CrossRef
Guo, Q., Tanaka, T., Nishio, M., Ogawa, H., Jpn J. Appl. Phys. 47, 612 (2008)CrossRef
Karpov, Y., Podolskaya, N., Zhmakin, I.A., Zhmakin, A.I., Phys. Rev. B 70, 235203 (2004)CrossRef
Hums, C., Bläsing, J., Dadgar, A., Diez, A., Hempel, T., Christen, J., Krost, A., Lorenz, K., Alves, E., Appl. Phys. Lett. 90, 022105 (2007)CrossRef
Lorenz, K., Franco, N., Alves, E., I.M.Watson, , R.W.Martin, , O’Donnell, K.P., Phys. Rev. Lett 97, 085501 (2006)CrossRef
Tong, H., Zhang, J., Liu, G., Herbsommer, J.A., Huang, G.S., Tansu, N., Appl. Phys. Lett. 97, 112105 (2010)CrossRef
Kim, K.S., Saxler, A., Kung, P., Razeghi, M., Lim, K.Y., Appl. Phys. Lett. 71, 800(1997)CrossRef
Guo, Q.X., Ogawa, H., Yoshida, A., J. Cryst. Growth 146, 462 (1995)CrossRef
Terashima, W., Che, S.B., Ishitani, Y., Yoshikawa, A., Jpn J. Appl. Phys. 45, L539 (2006)CrossRef
Lukitsch, M.J., Danylyuk, Y.V., Naik, V.M., Huang, C., Auner, G.W., Rimai, L., Naik, R., Appl. Phys. Lett. 79, 632 (2001)CrossRef
Wang, Z.Y., Shi, B.M., Cai, Y., Wang, N., Xie, M.H., J. Appl. Phys. 108, 033503 (2010)CrossRef
Kubota, K., Kobayashi, Y., Fujimoto, K., J. Appl. Phys. 66, 2984 (1989)CrossRef
Guo, Q.X., Okada, A., Kidera, H., Nishio, M., Ogawa, H., Jpn J. Appl. Phys. 39, L1143 (2000)CrossRef
Guo, Q.X., Okazaki, Y., Kume, Y., Tanaka, T., Nishio, M., Ogawa, H., J. Cryst. Growth 300, 151 (2007)CrossRef
Han, Q., Duan, C., Du, G., Shi, W., J. Mater. Res. 25, 1842 (2010)CrossRef
Dong, C.J., Xu, M., Chen, Q.Y., Liu, F.S., Zhou, H.P., Wei, Y., Ji, H.X., J. Alloys Compd. 479, 812 (2009)CrossRef
Peng, T., Piperk, J., Qiu, G., Olowolafe, J.O., Unruh, K.M., Swann, C.P., Schubert, E.F., Appl. Phys. Lett. 71, 2439 (1997)CrossRef
Yeh, T.-S., Wu, J.-M., Lan, W.-H., Thin Solid Films 517, 3204 (2009)CrossRef
Cruz, L.R., de Avillez, R.R., Thin Solid Films 373, 15 (2000)CrossRef
Chu, T.L., Chu, S.S., Prog. Photovolt. Res. Appl. 1, 31 (1993)CrossRef
Shanmugan, S., Mutharasu, D., J. Alloys Compd. 509, 2143 (2011)CrossRef
Shanmugan, S., Mutharasu, D., Chalcogenide Letters 7, 581 (2010)
Shanmugan, S., Balaji, S., Mutharasu, D., Mater. Lett. 63, 1189 (2009)CrossRef
Jelani, M., Bashir, S., Akram, M., Yousaf, D., Afzal, N., Ahmad, S., Phys. Scr. 89, 025703 (2014)CrossRef
Hankare, P.P., Chate, P.A., Sathe, D.J., Chavan, P.A., Bhuse, V.M., J. Mater. Sci. Mater. Electron 20, 374 (2009)CrossRef