Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-12T16:21:57.524Z Has data issue: false hasContentIssue false

Transformers: A joint model explaining remanent fluxes

Published online by Cambridge University Press:  15 February 2001

M. Elleuch*
Affiliation:
Laboratoire des Systèmes Électriques-ENIT, BP 37, Le bélvédère, 1002 Tunis, Tunisia
M. Poloujadoff
Affiliation:
Laboratoire d'Électrotechnique de Paris 6, 4 place Jussieu, 45252 Paris Cedex 05, France
M. B. A. Kamoun
Affiliation:
Laboratoire LETAU-ENIS, BP W, 3000 Sfax, Tunisia
Get access

Abstract

The magnetic circuit of power transformers is built with magnetic oriented grain sheet. These modern sheets present a more and more narrow static hysteresis cycle, as well as an important remanent flux density, generally larger than 1 tesla. Although such a magnetic circuit necessarily includes joint air gaps, the experiment shows that these don't lead to an appreciable weakening of remanent fluxes. In order to explain the “paradox” of the existence of an important remanent fluxes in the magnetic circuits including air gaps, we propose a new model of joint called "pseudo-variable air gap" allowing to account for the nature of the type of joint: butt or overlap. It is shown that the new model fully explains the existence of an important remanent when the overlap joint has been used (which corresponds to the power transformer case), as well as the nearly total disappearance of the remanent fluxes in case of butt type joint. In addition, this model could be easily implemented in a global transformer model; which contributes to the improvement of the transformer models deriving from the circuit theory.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Molcrette, V., Kotny, J.L., Swan, J.P., Brudny, J.F., IEEE Trans. Magn. 34, 1192 (1998). CrossRef
L. Pierrat, T. Tran-Quoc, Influence of Random Variables on Transformer Inrush Current, in Proceedings of the International Conference on Power Systems Transients, Lisbon, September, 1995, pp. 148-152.
Tran-Quoc, T., Pierrat, L., IEEE Trans. Magn. 31, 2060 (1995). CrossRef
Takehara, J., Kitagawa, M., Nakata, T., Takahashi, N., Electr. Eng. Jap. 109, 125 (1989). CrossRef
Dick, E.P., Watson, W., IEEE Trans. Power Appar. Syst. 100, 409 (1981). CrossRef
Teape, J.W., Slater, R.D., Simpson, R.R.S., Wood, W.S., IEE Proc. 123, 173 (1976).
Elleuch, M., Poloujadoff, M., IEEE Trans. Magn. 34, 3701 (1998). CrossRef
Elleuch, M., Poloujadoff, M., Acta Tech. Csav 42, 245 (1997).
Elleuch, M., Poloujadoff, M., IEEE Trans. Magn. 32, 3335 (1996). CrossRef
Elleuch, M., Poloujadoff, M., IEEE Trans. Magn. 33, 4319 (1997). CrossRef
Swift, G.W., IEEE Trans. Magn. 11, 61 (1975). CrossRef
Loffler, F., Pfutzner, H., Booth, T., Bengtsson, C., Gramm, K., IEEE Trans. Magn. 30, 913 (1994). CrossRef
Nakata, T., Kawase, Y., Electr. Eng. Jap. 106, 48 (1986). CrossRef
Nakata, T., Kawase, Y., Electr. Eng. Jap. 102, 78 (1982). CrossRef
Jones, M.A., Moses, A.J., IEEE Trans. Magn. 10, 321 (1974). CrossRef
Jones, M.A., Moses, A.J., Thompson, J.E., IEEE Trans. Magn. 9, 114 (1973). CrossRef
Moreira, J.C., Lipo, T.A., IEEE Trans. Ind. Appl. 28, 343 (1992). CrossRef
W. MacLyman, Transformer and Inductor Design Handbook, edited by Marcel Dekker Inc. (New York, 1988).
Nakata, T., IEEE Trans. Magn. 20, 1750 (1984). CrossRef
Dolinar, D., Pihler, J., Grear, B., IEEE Trans. Power Delivery 8, 1811 (1993). CrossRef
Leon, F., Semlyen, A., IEEE Trans. Power Delivery 9, 231 (1994). CrossRef
M. Laasonen, R. Hirvonen, Inrush Currents of Three Winding Transformers, in Proceeding of the International Conference on Power Systems Transients, Lisbon, September, 1995, pp. 125-130.