Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-10T00:27:51.679Z Has data issue: false hasContentIssue false

Tunable visible emission of TM-doped ZnS quantum dots (TM: Mn2+, Co2+, Ag+)

Published online by Cambridge University Press:  03 August 2012

S.M. Taheri Otaqsara*
Affiliation:
Department of Physics, Malek-Astar University of Technology, PO Box 83145/115, Isfahan, Shahin Shahr, Iran
Get access

Abstract

3 d transition-metallic ions doped ZnS quantum dots (Q-dots) were synthesized by the facile wet-chemical process. During synthesis, various ions, i.e. manganese (Mn2+), cobalt (Co2+) and silver (Ag+), were used and their photoluminescence (PL) response investigated. UV-vis absorption studies show that the various dopant ions can effectively tune energy band structure. The PL emission band is red shifted on Mn2+ doping (~575 nm) as compared to pure ZnS Q-dots (~420 nm) which is due to 4T1(G) → 6A1(S) radiative transitions. Blue/green-emission peaks at ~487 nm/~508 nm observed, respectively, on Co2+/Ag+ doping are probably arising from the recombination between the sulfur vacancy level and the new dopant level. Luminescence emission efficiency (LEE) is found to be maximum at 5 mol% Mn2+ doping and then decreases. On doping by Ag+ the LEE is found to be maximum at 2 mol% doping and almost completely quenched at 5 mol% doping. Contrary to the above, Co2+ quenched the overall PL.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bhargava, R.N., Gallagher, D., Phys. Rev. Lett. 73, 3 (1994)
Li, Y., Ding, Y., Zhang, Y., Qian, Y., J. Phys. Chem. Solids 60, 13 (1993)CrossRef
Suyvr, J.F., Wuister, S.F., Kelley, J.J., Meijerink, A., Nano Lett. 1, 8 (2001)
Li, H., Wan, Y., Shin, W.H., Nanotechnology 18, 205604 (2007)CrossRef
Taheri, S.M., Yousefi, M.H., Khosravi, A.A., Braz. J. Phys. 40, 301 (2010)CrossRef
Taheri Otaqsara, S.M., Yousefi, M.H., Khosravi, A.A., Turkish J. Phys. 35, 1 (2011)
Taheri Otaqsara, S.M., Eur. Phys. J. Appl. Phys. 55, 20403 (2011)CrossRef
Yousefi, M.H., Abdolhosseinzade, A.A., Fallah, H.R., Khosravi, A.A., Mod. Phys. Lett. B 24, 2591 (2010)CrossRef
Khosravi, A.A., Kundu, M., Deshpanda, S.K., Kulkarni, S.K., Appl. Phys. Lett. 67, 2702 (1995)CrossRef
Khani, O., Rajabi, H.R., Yousefi, M.H., Khosravi, A.A., Jannesari, M., Shamsipur, M., Spectrochim. Acta Part A, 79, 361 (2011)CrossRef
Vathankhah, C., Yousefi, M.H., Khosravi, A.A., Savarian, M., Eur. Phys. J. Appl. Phys. 48, 20601 (2009)CrossRef
Borse, P.H., Deshmukh, N., Shinde, R.F., Date, S.K., Kulkarni, S.K., J. Mater. Sci. 34, 6077 (1999)CrossRef
Kunda, M., Khosravi, A.A., Kulkarni, S.K., Singh, P., J. Mater. Sci. 32, 245 (1997)CrossRef
Alivisatos, A.P., J. Phys. Chem. 100, 3226 (1996)CrossRef
Brus, L.E., J. Phys. Chem. 90, 2555 (1986)CrossRef
Nell, M., Marohn, J., McLendon, G., J. Phys. Chem. 109, 4359 (1990)
Spanhel, L., Haase, M., Weller, H., Henglein, A., J. Am. Chem. Soc. 109, 5649 (1987)CrossRef
Oda, S., Kukimoto, H., J. Lumin. 18–19, 829 (1979) CrossRef
Sapara, S., Prakash, A., Ghangrekar, A., Periasamy, N., Sharma, D.D., J. Phys. Chem. B 109, 1663 (2005)CrossRef
Denzler, D., Olschewski, M., Sattler, K., J. Appl. Phys. 84, 2841 (1998)CrossRef
Becker, W.G., Bard, A.J., J. Phys. Chem. 87, 4888 (1983)CrossRef
Rao, C.N.R., Muller, A., Cheetham, A.K. (eds.), The Chemistry of Nanomaterials (Wiley-VCH, Weinheim, 2004)CrossRefGoogle Scholar
Khosravi, A.A., Kundu, M., Kuruvilla, B.A., Shekhawat, G.S., Gupta, R.P., Sharma, A.K., Vyas, P.D., Appl. Phys. Lett. 67, 2506 (1995)CrossRef
Beaulac, R., Archer, P.I., Gamelin, D.R., J. Solid State Chem. 181, 1582 (2008)CrossRef
Lifshin, E., X-ray Characterization of Materials (Wiley-VCH, NY, 1999)CrossRefGoogle Scholar