Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-10T21:38:54.306Z Has data issue: false hasContentIssue false

A comparison of theoretical and experimental profiles for thermally-induced grain-boundary grooving

Published online by Cambridge University Press:  15 December 1999

K.-Y. Lee
Affiliation:
Michigan State University, Materials Science and Mechanics Department, East Lansing, MI 48824, USA
E. D. Case*
Affiliation:
Michigan State University, Materials Science and Mechanics Department, East Lansing, MI 48824, USA
Get access

Abstract

Thermally-induced grain boundary grooving has typically been characterized experimentally by either (1) optical interferometry (OI) or (2) reference line (RL) technique. For the OI technique, groove angle and groove width are reported and for the RL technique, groove angle, width and depth are reported. Even recent Atomic Force Microscope (AFM) studies of grain boundary grooving report their results in terms of groove angle, width, and depth exclusively. These measurements have been interpreted in terms of Mullins' 1957 theory on grain boundary grooving, which includes a derivation of the grain boundary groove profile. However, analyzing the groove depth, width, and angle uses only a small fraction of the groove profile information provided by Mullins' theory. In contrast to the literature, this study uses AFM data from thermal grooving in polycrystalline alumina to make a detailed comparison between Mullins' equation (and a modified form of Mullins' equation) for the entire groove profile rather than just the groove width or groove angle, thus providing a more rigorous and comprehensive test of theory. In addition, despite the wider and deeper grooves produced by microwave annealing, the modified form of Mullins' equation fits well both the microwave and conventionally annealed groove profiles.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Mullins, W.W., J. Appl. Phys. 28, 333 (1957). CrossRef
Mullins, W.W., J. Appl. Phys. 30, 77 (1959). CrossRef
W.W. Mullins, Metal Surfaces: Structure, Energetics and Kinetics (American Society for Metals, Metals Park, Ohio, 1963), Chap. 2, pp. 17-67.
Mullins, W.W., Trans. Metall. Soc. AIME 218, 354 (1960).
W.M. Robertson, R. Chang, Materials Science Research, The Role of Grain Boundaries and Surfaces in Ceramics, edited by W.W. Kriegel, H. Palmour III (Plenum Press, New York, 1966), Chap. 4, pp. 49-60.
W.M. Robertson, F.E. Ekstron, Impurity Effects in Surface Diffusion on Aluminum Oxide, Kinetics of Reactions in Ionic Systems, Materials Science Research, edited by T.J. Gray, V.D. Frechette (Plenum Press, New York, 1969), Chap. 14, pp. 273-283.
Tsoga, A., Sotiropoulou, D., Nikolopoulos, P., Mat. Sci. For. 207-209, 565 (1996).
Tsoga, A., Nikolopoulos, P., J. Am. Ceram. Soc. 77, 954 (1994). CrossRef
Genin, F.Y., Acta Metall. Mater. 43, 4289 (1995). CrossRef
Mullins, W.W., Shewmon, P.G., Acta Metallurgica 7, 163 (1959). CrossRef
Gaddipati, A.R., Scott, W.D., J. Mat. Sci. 21, 419 (1986). CrossRef
Shackelford, J.F., Scott, W.D., J. Am. Cer. Soc. 51, 688 (1968). CrossRef
Nikolopoulos, P., J. Mat. Sci. 20, 3993 (1985). CrossRef
Shin, W., Seo, W.S., Koumoto, K., J. Eur. Ceram. Soc. 18, 595 (1998). CrossRef
E.E. Underwood, A.R. Colcord, R.C. Waugh, Ceramic Microstructures, edited by R.M. Fulrath, J.A. Pask (John Wiley and Sons, New York, 1968), pp. 25-52.
National Bureau of Standards (U.S.), Circ. 539, Vol. 9 (1959) p. 3.
Lee, K.Y., Case, E.D., Asmussen Jr, J., Mat. Res. Innovat. 1, 101 (1997). CrossRef
Lee, K.Y., Cropsey, L.C.G., Tyszka, B.R., Case, E.D., Mat. Res. Bull. 32, 287 (1997). CrossRef
Lee, K.Y., Case, E.D., Materials Sci. Eng. A 269, 8 (1999). CrossRef
Instructional Manual, version 2.2, Digital Instruments NanoScopeTM III Atomic Force Microscope (1992) and personal communication, Digital Instruments, Santa Barbara, CA (1998).
Wang, Z.L., Bentley, J., Ultramicroscopy 51, 64 (1993). CrossRef
Pham Van, L., Kurnosikov, O., Cousty, J., Surf. Sci. 411, 263 (1998). CrossRef
Heffelfinger, J.R., Bench, M.W., Carter, C.B., Surf. Sci. 370, 168 (1997). CrossRef
Maruyama, T., Komatsu, W., J. Am. Cer. Soc. 58, 338 (1975). CrossRef
Yen, C.F., Coble, R.L., J. Am. Cer. Soc. 55, 507 (1972). CrossRef
Hillman, S.H., German, R.M., J. Mater. Sci. 27, 2641 (1992). CrossRef
Sun, B., Suo, Z., Acta Mater. 45, 4953 (1997). CrossRef
Choi, J.H., Kim, D.Y., Hockey, B.J., Wiederhorn, S.M., Handwerker, C.A., Blendell, J.E., Carter, W.C., Roosen, A.R., J. Am. Ceram. Soc. 80, 62 (1997). CrossRef
Manassidis, I., Gillan, M.J., J. Am. Ceram. Soc. 77, 335 (1994). CrossRef
Handwerker, C.A., Dynys, J.M., Cannon, R.M., Coble, R.L., J. Am. Ceram. Soc. 73, 1366 (1990).
Ikegami, T., Kotani, K., Eguchi, K., J. Am. Cer. Soc. 70, 885 (1987). CrossRef
Robertson, W.M., J. Appl. Phys. 42, 463 (1971). CrossRef
M.A. Janney, H.D. Kimrey, Microwave Sintering of Alumina at 28 GHz (American Ceramic Society, Westerville, OH, 1988), pp. 919 - 924.
Samuels, J., Brandon, J.R., J. Mater. Sci. 27, 3259 (1992). CrossRef
Janney, M.A., Kimrey, H.D., J. Mater. Sci. 32, 1347 (1997). CrossRef
Wroe, R., Rawley, A.T., J. Mater. Sci. 31, 2019 (1996). CrossRef
Lee, K.Y., Case, E.D., J. Mater. Sci. Lett. 18, 201 (1999). CrossRef
Nightengale, S.A., Dunnie, D.P., Wormer, H.K., J. Mater. Sci. 31, 5039 (1996). CrossRef
J.D. Katz, R.D. Blake, V.M. Kenkre, Ceramic Trans. (American Ceramic Society, Westerville, OH, 1991), pp. 95-104.
Freeman, S.A., Booske, J.H., Cooper, R.F., Phys. Rev. Lett. 74, 2042 (1995). CrossRef