Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-15T09:27:23.837Z Has data issue: false hasContentIssue false

Correlation between hysteresis phenomena and hole-like trap in capacitance-voltage characteristics of AlGaN/GaN of Schottky barrier diode

Published online by Cambridge University Press:  18 August 2011

M. Gassoumi*
Affiliation:
Laboratoire de Micro-Optoélectroniques et Nanostructures, Université de Monastir, Tunisia
S. Saadaoui
Affiliation:
Laboratoire de Micro-Optoélectroniques et Nanostructures, Université de Monastir, Tunisia
M.M. Ben Salem
Affiliation:
Laboratoire de Micro-Optoélectroniques et Nanostructures, Université de Monastir, Tunisia
C. Gaquiere
Affiliation:
Institut d’Électronique de Microélectronique et de Nanotechnologie IEMN, Département hyperfréquences et Semiconducteurs, Université des Sciences et Technologies de Lille, France
H. Maaref
Affiliation:
Laboratoire de Micro-Optoélectroniques et Nanostructures, Université de Monastir, Tunisia
Get access

Abstract

In this work we report on the characteristics of (Ni/Au)/AlGaN/GaN/SiC Schottky barrier diode (SBD). A variety of electrical techniques such as capacitance-voltage (C-V) and deep-level transient spectroscopy (DLTS) measurements were used to characterize the diodes. We observed an hysteresis phenomenon on the C-V characteristics in the Schottky diode. The parasitic effect can be attributed to the presence of traps in the heterostructure. Deep defects analysis was performed by deep-level transient spectroscopy (DLTS). One hole trap have been detected with an activation energy and a capture cross-section of 0.75 eV and 1.093 × 10−11 cm2. The localization and the identification of this trap have occurred and a correlation between the defect and the hysteresis phenomenon has been discussed. At high temperatures, the DLTS signal sometimes becomes negative, likely due to an artificial surface-state effect.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lu, W., Yang, J., Khan, M.A., Adesida, I., IEEE Trans. Electron Devices 48, 581 (2001)CrossRef
Mahmood, Z.H., Shah, A.P., Kadir, A., Gokhale, M.R., Bhattacharya, A., Arora, B.M., Phys. Stat. Sol. (b) 245, 2567 (2008)CrossRef
Gassoumi, M., Fathallah, O., Gaquiere, C., Maaref, H., Physica B 405, 2337 (2010)CrossRef
Zhang, A.P., Rowland, L.B., Kaminsky, E.B., Tilak, V., Grande, J.C., Teetsov, J., Vertiatchikh, A., Eastman, L.F., J. Electron. Mater. 32, 388 (2003)CrossRef
Fang, Z.-Q., Look, D.C., Kim, D.H., Adesida, I., Appl. Phys. Lett. 87, 182115 (2005)CrossRef
Gassoumi, M., Grimbert, B., Poisson, M.A., Fontaine, J., Zaidi, M.A., Gaquiere, C., Maaref, H., J. Optoelectron. Adv. Mater. 11, 1713 (2009)
Armstrong, A., Chakraborty, A., Speck, J.S., DenBaars, S.P., Mishra, U.K., Ringel, S.A., Appl. Phys. Lett. 89, 262116 (2006)CrossRef
Yoshida, S., Li, J., Ikeda, N., Hataya, K., Phys. Stat. Sol. C 2, 2602 (2005)
Chikhaoui, W., Bluet, J.M., Bru-Chevallier, C., Dua, C., Aubry, R., Phys. Stat. Sol. C 7, 92 (2010)
Anwar, A.F.M., Faraclas, E.W., Solid-State Electron. 50, 1041 (2006)CrossRef
Qiao, D., Yu, L.S., Lau, S.S., J. Appl. Phys. 87, 801 (2000)CrossRef
Sugawara, K., Kotani, J., Hashizumeb, T., Appl. Phys. Lett. 94, 152106 (2009)CrossRef
Gassoumi, M., Bluet, J.M., Gaquière, C., Guillot, G., Maaref, H., Microelectr. J. 40, 1161 (2009)CrossRef
Polyakov, , et al., J. Appl. Phys. 84, 870 (1998)CrossRef
Auret, F.D., Meyer, W.E., Wu, L., Hayes, M., Legodi, M.J., Beaumont, B., Gibart, P., Phys. Stat. Sol. C: Conf. 1, 2271 (2004)CrossRef