Hostname: page-component-5c6d5d7d68-7tdvq Total loading time: 0 Render date: 2024-08-16T09:11:51.048Z Has data issue: false hasContentIssue false

Effect of oxidation treatments on the redistribution of the boron in the thin films of polycrystalline silicon Si-LPCVD used in VLSI

Published online by Cambridge University Press:  19 January 2004

A. Aït-Kaki*
Affiliation:
Département d'Électronique, Faculté des Sciences de l'Ingénieur, Université de Constantine, Route d'Ain El-Bey, 25000 Constantine, Algeria
D. Rechem
Affiliation:
Département d'Électronique, Faculté des Sciences de l'Ingénieur, Université de Constantine, Route d'Ain El-Bey, 25000 Constantine, Algeria
Get access

Abstract

Results of a quantitative characterisation SIMS at high levels of boron-doping concentration (2 × 1020 cm−3) of in situ boron-doped LPCVD-polysilicon thin films before and after thermal-oxidation treatments are presented. Measurements of the precedent characterisation methods (SIMS) are performed on submicron layers (300 nm) deposited at the extreme temperatures Td = 520 °C and Td = 605 °C. The thermal-oxidation experiments are carried out under dry oxygen (O2) at three oxidation temperatures Tox = 840 °C, 945 °C and 1050 °C for several durations. After these thermal-oxidation processes, remarkable changes in the behavior of doping profile are observed. This behavior seems to be typically characteristic of the in situ heavily boron-doped films. In addition to the presence of some saturation-thermal-dependence phenomenon, we find that these results well correlate and support the presence of another phenomenon called “Differential of the Oxidation Rate (DOR)” which is evidenced as typical of the in situ doped films.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Horiuchi, S., Blanchard, R., Solid-State Electron. 18, 529 (1975) CrossRef
Chappelow, R.E., Lin, P.T., J. Electrochem. Soc. 123, 913 (1976) CrossRef
Post, I.R.C., Ashburn, P., IEEE Trans. Electron Devices 38, 2442 (1991) CrossRef
Kim, D.M., Qian, F., IEEE Trans. Electron Devices ED 34, 1774 (1987) CrossRef
Chang, C.C., Sheng, T.T., Shankoff, T.A., J. Electrochem. Soc. 130, 1168 (1983) CrossRef
Boukezzata, M., Bielle-Daspet, D., Sarrabayrouse, G., Mansour, F., Thin Solid Films 279, 145 (1996) CrossRef
Seto, J.Y., J. Appl. Phys. 46, 5247 (1975) CrossRef
Mandurah, M.M., Sarawat, K.C., Helms, C.R., J. Appl. Phys. 51, 5755 (1980) CrossRef
Kamins, T.I., Manoliu, J., Tuker, R.N., J. Appl. Phys. 51, 5755 (1980)
Prost, V.., H.J. Bohm, H. Schaber, H. Oppolzer, I. Weitzel, J. Electrochem. Soc. 135, 671 (1988) CrossRef
Schwettmann, F.N., J. Appl. Phys. 45, 1918 (1974) CrossRef
Bielle-Daspet, D., Schied, E., Azzaro, C., de Mauduit, B., Pieraggi, B., Thin Solid Films 204, 33 (1991) CrossRef
Harbek, G., Krausbauer, L., Steigmeir, E.F., Widmer, A.E., Appl. Phys. Lett. 42, 249 (1983) CrossRef
Tompkins, H.G., Seddoum, K., Garling, L.K., Fejes, P., Thin Solid Films 272, 93 (1996) CrossRef
Ryssel, H., Muller, K., Haberger, K., Henkelmann, R., Jahel, F., J. Appl. Phys. 22, 35 (1980) CrossRef
S.M. Sze, VLSI Technology, 2nd edn. (McGraw-Hill, New York, 1988), Chap. 7
S. Wolf, R.N. Tauber, Silicon Processing for the VLSI era, Vol. 1 (Lattice Press, Sunset Beach, California, 1986)
Ryssel, H., Haberger, K., Hoffmann, K., Prinke, G., Dumcke, R., Sachs, A., IEEE Trans. Electron Devices ED 27, 1484 (1980) CrossRef
Losee, D.L., Lavine, J.P., Trabka, E.A., Lee, S.T., Jarman, C.M., J. Appl. Phys. 55, 1218 (1984) CrossRef
Chen, T.P., Lee, T.F., Chang, C.Y., Hsieh, W.Y., Chen, L.J., J. Electrochem. Soc. 142, 2000 (1995) CrossRef
Nakayama, S., Kawashima, I., Murota, J., J. Electrochem. Soc. 133, 1721 (1986) CrossRef