Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-12T22:28:13.798Z Has data issue: false hasContentIssue false

Effect of RF power on the structural and optical properties of RF-sputtered ZnO thin films

Published online by Cambridge University Press:  10 June 2014

Lahcen Nkhaili*
Affiliation:
Solid State Physics and Thin Films Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, PO Box 2390, Marrakech 40000, Morocco
Abdelkader El kissani
Affiliation:
Solid State Physics and Thin Films Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, PO Box 2390, Marrakech 40000, Morocco
Mustapha Ait Ali
Affiliation:
Laboratory of Coordination Chemistry and Catalysis, Faculty of Sciences Semlalia, Cadi Ayyad University, PO Box 2390, Marrakech 40000, Morocco
Youssef Ijdiyaou
Affiliation:
Solid State Physics and Thin Films Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, PO Box 2390, Marrakech 40000, Morocco
Abdelmajid Elmansouri
Affiliation:
Solid State Physics and Thin Films Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, PO Box 2390, Marrakech 40000, Morocco
Abdel-Ilah Elkhalfi
Affiliation:
Solid State Physics and Thin Films Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, PO Box 2390, Marrakech 40000, Morocco
Abdelkader Outzourhit
Affiliation:
Solid State Physics and Thin Films Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, PO Box 2390, Marrakech 40000, Morocco
Get access

Abstract

ZnO thin films were deposited by reactive cathodic radio-frequency (RF) sputtering from a pure Zn target in a gas mixture of 30% O2 and 70% Ar and at different RF powers. The structural properties of the as-deposited thin films were studied by X-ray diffraction (XRD). The optical properties (especially the refractive index, absorption coefficient and optical band gap) were investigated by optical transmission measurements in the ultraviolet-visible-near Infrared wavelength range. The XRD patterns showed that the as-deposited ZnO thin films are polycrystalline. The crystallite size varied with RF power reaching a maximum at 200 W. These results were correlated with X-ray refectometry measurements which revealed a minimum in the film density at 200 W. The deposition rate of these films varied from 2.53 to 5.27 nm/min depending on the RF-power, with a maximum at 200 W. On the other hand, the optical band gap Eg was quasi-constant (about 3.28 eV) when the RF power was increased from 100 to 300 W.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lin, S.S., Huang, J.-L., Surf. Coat. Technol. 185, 222 (2004)CrossRef
Gupta, V., Mansingh, A., J. Appl. Phys. 80, 1063 (1996)CrossRef
Wyckoff, R.W.G., Crystal Structures vol. 1 (Inter Science Publishers Inc, New York, 1960), p. 19Google Scholar
Hartnagel, H.L., Dawar, A.L., Jain, A.K., Jagadish, C., Semiconducting Transparent Thin Films 4, 140 (2009)
Kim, N.H., Kim, H.W., Mater. Lett. 58, 938 (2004)CrossRef
Muller, J., Weissenrieder, S., Fresenius J. Anal. Chem. 349, 380 (1994)CrossRef
Gorla, C.R., Emanetoglu, N.W., Liang, S., Mayo, W.E., Lu, Y., Wraback, M., Shen, H., J. Appl. Phys. 85, 2595 (1999)CrossRef
Hossain, F.M., Nishii, J., Takagi, S., Ohtomo, A., Fukumura, T., Fujioka, H., Ohmo, H., Koinuma, H., Kawasaki, M., J. Appl. Phys. 94, 7768 (2003)CrossRef
Guillemoles, J.F., Lusson, A., Cowache, P., Massaccesi, S., Vedel, J., Lincot, D., Adv. Mater. 6, 379 (1994)CrossRef
Ellmer, K., Klein, A., Rech, B., Transparent Conductive Zinc Oxide: Basics and Applications in Thin Film Solar Cells (Springer, Berlin, 2008), p. p. 446CrossRefGoogle Scholar
Look, D.C., J. Electron. Mater. 35, 1299 (2006)CrossRef
Lau, S.P., Yang, H.Y., Yu, S.F., Li, H.D., Tanemura, M., Okita, T., Hatano, H., Hng, H., Appl. Phys. Lett. 87, 013104 (2005)CrossRef
Wei, X., Man, B., Xue, C., Chen, C., Liu, M., Jpn J. Appl. Phys. 45, 8586 (2006)CrossRef
Elias, J., Tena-Zaera, R., Lévy-Clément, C., Thin Solid Films 515, 8553 (2007)CrossRef
Nause, J., Comp. Semicond. 11, 29 (2005)
Zhengwei, L., Gao, W., Mater. Lett. 58, 1363 (2004)
Yang, P.F., Wen, H.C., Jion, S.R., Lai, Y.S., Wu, S., Chen, R.S., Microelectr. Reliab. 48, 389 (2008)CrossRef
Gardeniers, J.G.E., Rittersma, Z.M., Burger, G.J., J. Appl. Phys. 83, 7844 (1998)CrossRef
Venkataraj, S., Kappertz, O., Weis, H., Drese, R., Jayavel, R., Wuttig, M., J. Appl. Phys. 92, 3599 (2002)CrossRef
Yinzken, W., Benli, C., Physica B 403, 1979 (2008)
Han, D.D. et al., Sci. China Inf. Sci. 55, 951 (2012)CrossRef
Bennouna, A., Ameziane, E.L., Haouni, A., Ghermani, N., Azizan, M., Brunel, M., Sol. Energy Mater. 20, 405 (1990)CrossRef
Khaidar, M., Essafti, A., Bennouna, A., Ameziane, E.L., Brunel, M., J. Appl. Phys. 65, 3248 (1989)CrossRef
Fouchet, A., Prellier, W., Mercey, B., Mechin, L., Kulkarni, V.N., Venkatesan, T., J. Appl. Phys. 96, 3228 (2004)CrossRef
Al-Hardan, N., Abdullah, M.J., AbdulAziz, A., Ahmad, H., Rashid, M., Physica B 405, 1081 (2010)CrossRef
Laaziz, Y., Bennouna, A., Chahboun, N., Outzourhit, A., Amezianne, E.L., Thin Solid Films 372, 149 (2000)CrossRef
Poelman, D., Smet, P.F., J. Phys. D: Appl. Phys. 36, 1850 (2003)CrossRef
Jaffe, J.E., Hess, A.C., Phys. Rev. B 48, 7903 (1993)CrossRef
Klung, H.P., Alexander, L.E., X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd edn (Wiley, New York, 1974)Google Scholar
Swanepoel, R., J. Phys. E: Sci. Instrum. 16, 1214 (1983)CrossRef
Anthony, T.C., Fahrunbruch, A.L., Bube, R.H., J. Cryst. Growth 59, 289 (1982)
Moustaghfir, A., Ph.D. thesis, Université Blaise Pascal de Clermont-Ferrand, p. 69, 2003
Hezam, M., Tabet, N., Mekki, A., Thin Solid Films 4, 22 (2010)