Hostname: page-component-6d856f89d9-4thr5 Total loading time: 0 Render date: 2024-07-16T08:46:40.670Z Has data issue: false hasContentIssue false

Energy relaxations of hot electrons in AlGaN/AlN/GaN heterostructures grown by MOCVD on sapphire and 6H-SiC substrates

Published online by Cambridge University Press:  18 August 2011

A. Ilgaz
Affiliation:
Department of Physics, Faculty of Science and Letter, Balıkesir University, Çağış Kampüsü, 10145 Balıkesir, Turkey
S. Gökden*
Affiliation:
Department of Physics, Faculty of Science and Letter, Balıkesir University, Çağış Kampüsü, 10145 Balıkesir, Turkey
R. Tülek
Affiliation:
Department of Physics, Faculty of Science and Letter, Balıkesir University, Çağış Kampüsü, 10145 Balıkesir, Turkey
A. Teke
Affiliation:
Department of Physics, Faculty of Science and Letter, Balıkesir University, Çağış Kampüsü, 10145 Balıkesir, Turkey
S. Özçelik
Affiliation:
Department of Physics, Faculty of Science and Letter, Gazi University, Teknikokullar, 06500 Ankara, Turkey
E. Özbay
Affiliation:
Department of Physics, Department of Electrical and Electronics Engineering, Nanotechnology Research Center-NANOTAM, Bilkent University, 06800 Ankara, Turkey
Get access

Abstract

In this work, we investigated the hot-electron dynamics of AlGaN/GaN HEMT structures grown by MOCVD on sapphire and SiC substrates at 80 K. High-speed current-voltage measurements and Hall measurements over the temperature range 27–300 K were used to study hot-electron dynamics. At low fields, drift velocity increases linearly, but deviates from the linearity toward high electric fields. Drift velocities are deduced as approximately 6.55 × 106 and 6.60 × 106 cm/s at an electric field of around E ~ 25 kV/cm for samples grown on sapphire and SiC, respectively. To obtain the electron temperature as a function of the applied electric field and power loss as a function of the electron temperature, we used the so-called mobility comparison method with power balance equations. Although their low field carrier transport properties are similar as observed from Hall measurements, hot carrier energy dissipation differs for samples grown on sapphire and SiC substrates. We found that LO-phonon lifetimes are 0.50 ps and 0.32 ps for sapphire and SiC substrates, respectively. A long hot-phonon lifetime results in large non- equilibrium hot phonons. Non-equilibrium hot phonons slow energy relaxation and increase the momentum relaxation. The effective energy relaxation times at high fields are 24 and 65 ps for samples grown on sapphire and SiC substrates, respectively. They increase as the electron temperature decreases.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ambacher, O. et al., J. Appl. Phys. 85, 3222 (1999)CrossRef
Pearton, S.J., Zolper, J.C., Shul, R.J., Ren, F., J. Appl. Phys. 86, 1 (1999)CrossRef
Nakamura, S., Fasol, G., The Blue Laser Diode (Springer Verlag, Berlin, 1997)CrossRefGoogle Scholar
Sheppard, S.T., Doverspike, K., Pribble, W.L., Allen, S.T., Palmour, J.W., Kehias, L.T., Jenkins, T.J., IEEE Trans. Electron. Devices Lett. 20, 161 (1999)CrossRef
Strite, S., Morkoc, H., J. Vac. Sci. Technol. B 10, 1237 (1992)CrossRef
Kuzmik, J., IEEE Trans. Electron. Devices Lett. 22, 510 (2001)CrossRef
Matulionis, A., Liberis, J., Šermukšnis, E., Xie, J., Leach, J.H., Wu, M., Morkoc, H., Semicond. Sci. Technol. 23, 075048 (2008)CrossRef
Ari, M., Turkoglu, O., Physica B 348, 272 (2004)CrossRef
Matulionis, A., Katilius, R., Liberis, J., Ardaravicius, L., Eastman, L.F., Shealy, J.R., Smart, J., J. Appl. Phys. 92, 4490 (2002)CrossRef
Matulionis, A., Liberis, J., Ardaravicius, L., Smart, J., Pavlidis, D., Hubbard, S., Eastman, L.F., Int. J. High Speed Electron. Syst. 12, 459 (2002)CrossRef
Matulionis, A., Liberis, J., Ramonas, M., Matulioniene, I., Eastman, L.F., Vertiatchikh, A., Chen, X., Sun, Y.-J., Phys. Stat. Sol. (c) 2, 2585 (2005)CrossRef
Matulionis, A., Phys. Stat. Sol. (a) 203, 2313 (2006)CrossRef
Matulionis, A., Liberis, J., Ardaravicius, L., Ramonas, M., Matulioniene, I., Smart, J., Semicond. Sci. Technol. 17, L9 (2002)CrossRef
Lee, K.J., Harris, J.J., Kent, A.J., Wang, T., Sakai, S., Maude, D.K., Portal, J.-C., Appl. Phys. Lett. 78, 2893 (2001)CrossRef
Brana, A.F., Diaz-Paniaqua, C., Batallan, F., Garrido, J.A., Munõz, E., Omnes, F., J. Appl. Phys. 88, 932 (2000)CrossRef
Martinez, C.E., Stanton, N.M., Kent, A.J., Williams, M.L., Harrison, I., Tang, H., Webb, J.B., Bardwell, J.A., Semicond. Sci. Technol. 19, S440 (2004)CrossRef
Von der Linde, D., Kuhl, J., Klingenburg, H., Phys. Rev. Lett. 44, 1505 (1980)CrossRef
Kash, J.A., Tsang, J.C., Hvam, J.M., Phys. Rev. Lett. 54, 2151 (1985)CrossRef
Jha, S.S., Vengurlekar, A.S., Hyperfine Interact. 38, 585 (1987)CrossRef
Tsen, K.T., Ferry, D.K., Botchkarev, A., Sverdlov, B., Salvador, A., Morkoc, H., Appl. Phys. Lett. 72, 2132 (1998)CrossRef
Srivastava, G.P., Phys. Rev. B 77, 155205 (2008)CrossRef
Ramonas, M., Matulionis, A., Liberis, J., Eastman, L., Chen, X., Sun, Y.-J., Phys. Rev. B 71, 075324 (2005)CrossRef
Ridley, B.K., Semicond. Sci. Technol. 4, 1142 (1989)CrossRef
Wu, S., Geiser, P., Jun, J., Karpinski, J., Wang, D., Sobolewski, R., J. Appl. Phys. 101, 043701 (2007)CrossRef
Matulionis, A., Liberis, J., Matulioniene, I., Ramonas, M., Eastman, L.F., Shealy, J.R., Tilak, V., Vertiatchikh, A., Phys. Rev. B 68, 035338 (2003)CrossRef
Wang, Z., Reimann, K., Woerner, M., Elsaesser, T., Hofstetter, D., Hwang, J., Schaff, W.J., Eastman, L.F., Phys. Rev. Lett. 94, 037403 (2005)CrossRef
Tsen, K.T., Kiang, J.G., Ferry, D.K., Morkoc, H., Appl. Phys. Lett. 89, 112111 (2006)CrossRef
Matulionis, A., Liberis, J., Ardaravicius, L., Eastman, L.F., Shealy, J.R., Vertiatchikh, A., Semicond. Sci. Technol. 19, S421 (2004)CrossRef
Ye, H., Wicks, G.W., Fauchet, P.M., Appl. Phys. Lett. 74, 711 (1999)CrossRef
Balkan, N., Arikan, M.C., Gokden, S., Tilak, V., Schaff, B., Shealy, R.J., J. Phys. Condens. Matter 14, 3457 (2002)CrossRef
Danilchenko, B.A., Zelensky, S.E., Drok, E., Vitusevich, S.A., Danylyuk, S.V., Klein, N., Luüth, H., Belyaev, A.E., Kochelap, V.A., Phys. Stat. Sol. (b) 243, 1529 (2006)CrossRef
Tülek, R., Ilgaz, A., Gökden, S., Teke, A., Özturk, M.K., Kasap, M., Ozcelik, S., Arslan, E., Özbay, E., J. Appl. Phys. 105, 013707 (2009)CrossRef
Balkan, N., Gupta, R., Daniels, M.E., Ridley, B.K., Emeny, M., Semicond. Sci. Technol. 5, 986 (1990)CrossRef
Gupta, R., Balkan, N., Ridley, B.K., Semicond. Sci. Technol. 7, 274 (1992)CrossRef
Stanton, N.M., Kent, A.J., Akimov, A.V., Hawker, P., Cheng, T.S., Foxon, C.T., J. Appl. Phys. 89, 973 (2001)CrossRef
Stanton, N.M., Kent, A.J., Akimov, A.V., Hawker, P., Cheng, T.S., Foxon, C.T., Phys. Stat. Sol. (a) 176, 369 (1999)3.0.CO;2-Z>CrossRef
Cankurtaran, M., Çelik, H., Balkan, N., Phys. Stat. Sol. (b) 229, 1191 (2002)3.0.CO;2-3>CrossRef