Hostname: page-component-84b7d79bbc-rnpqb Total loading time: 0 Render date: 2024-07-26T00:24:26.092Z Has data issue: false hasContentIssue false

Evidence of lateral coupling in long wavelength vertically stacked InAs/GaAs(001) quantum dots

Published online by Cambridge University Press:  04 March 2005

B. Ilahi*
Affiliation:
Laboratoire de Physique des Semiconducteurs et des Composants Électroniques, Faculté des Sciences, 5019 Monastir, Tunisia
L. Sfaxi
Affiliation:
Laboratoire de Physique des Semiconducteurs et des Composants Électroniques, Faculté des Sciences, 5019 Monastir, Tunisia
G. Bremond
Affiliation:
Laboratoire de Physique de la Matière (UMR CNRS 5511), INSA de Lyon, 69621 Villeurbanne, France
M. Senes
Affiliation:
Laboratoire de Nanophysique, Magnétisme et Optoélectronique (LNMO), INSA de Toulouse, 31077 Toulouse, France
X. Marie
Affiliation:
Laboratoire de Nanophysique, Magnétisme et Optoélectronique (LNMO), INSA de Toulouse, 31077 Toulouse, France
H. Maaref
Affiliation:
Laboratoire de Physique des Semiconducteurs et des Composants Électroniques, Faculté des Sciences, 5019 Monastir, Tunisia
Get access

Abstract

1.3 $\mu $m room temperature emitting multiple-stacked InAs/GaAs(001) quantum dots (QDs) are grown by molecular beam epitaxy (MBE) and investigated by photoluminescence (PL), polarized photoluminescence (PPL), photoluminescence excitation (PLE), time resolved photoluminescence (TRPL) and atomic force microscopy AFM. The PL measurement shows that two distinct sets of QDs coexist in the sample. The AFM image of the tenth QDs layer not only confirms the bimodal size distribution of the QDs but also shows that the large QDs are elongated along the [1-10] direction. The former structural information has been verified by PPL. Through the excitation density dependent PL and the detection energy dependent PLE we have evidenced two kinds of QDs within the small size dots population: isolated QDs and laterally coupled QDs with vertically coupled large size QDs. The large size dot population is found to possess a long PL decay time confirming that they are electronically coupled. In the meanwhile the PL decay time of the small QDs is found to be similar to that of single layer QDs. These results would help improve understanding some fundamental properties of an interesting structure for optoelectronic applications.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arakawa, Y., Asakaki, H., Appl. Phys. Lett. 40, 939 (1982) CrossRef
Leonard, D., Krishnamurthy, M., Reaves, C.M., Denbaars, S.P., Petroff, P.M., Appl. Phys. Lett. 63, 3203 (1993) CrossRef
Cusack, M.A., Briddon, P.R., Jaros, M., Phys. Rev. B 54, R2300 (1996) CrossRef
Migliorato, M.A., Wilson, L.R., Mowbray, D.J., Scolnick, M.S., Al-Khafaji, M., Cullis, A.G., Hopkinson, M., J. Appl. Phys. 90, 6374 (2001) and references therein CrossRef
Tsatsul'nikov, A.F., Belousov, M.V., Bert, N.A., Egorov, A. Yu., Kop'ev, P.S., Kovsh, A.R., Krestinov, I.L., Ledentsov, N.N., Maximov, M.V., Suvorova, A.A., Ustinov, V.M., Volovik, B.V., Zhukov, A.E., Grundmann, M., Bimberg, D., Alferov, Zh.I., Microelectron. Eng. 43-44, 37 (1998) and references therein CrossRef
Yu, P. et al., Phys. Rev. B 60, 16680 (1999) CrossRef
Anders, S., Kim, C.S., Klein, B., Keller, M.W., Mirin, R.P., Norman, A.G., Phys. Rev. B 66, 125309 (2002) CrossRef
Saint-Girons, G., Sagnes, I., J. Appl. Phys. 91, 10115 (2002) CrossRef
Heitz, R., Kalburge, A., Xie, Q., Grundmann, M., Chen, P., Hoffmann, A., Madhukar, A., Bimberg, D, Phys. Rev. B 57, 9050 (1998) CrossRef
Gurioli, M., Sanguinetti, S., Lozzia, S., Grilli, E., Guzzi, M., Frigeri, P., Franchi, S., Colocci, M., Vinattieri, A., Taddei, S., Phys. Stat. Sol. A 190, 577 (2002) 3.0.CO;2-X>CrossRef
Winkler, R.W., Kootthaus, J.P., Ploog, K., Phys. Rev. Lett. 62, 1177 (1989) CrossRef
Li, S.S., Xia, J.B., Phys. Rev. B 50, 8602 (1994) CrossRef
Yang, M., Sturm, J.C., Phys. Rev. B 56, 1973 (1997) CrossRef
Lee, H.S., Lee, J.Y., Kim, T.W., Choo, D.C., Kim, M.D., Seo, S.Y., Shin, J.H., J. Cryst. Growth 241, 63 (2002) CrossRef
Talalaev, V.G., Novikov, B.V., Smirnov, M.A., Kachkanov, V.V., Gobsch, G., Goldhahn, R., Winzer, A., Cirlin, G.E., Egorov, V.A., Ustinov, V.M., Nanotechnology 13, 143 (2002) CrossRef
Ilahi, B., Sfaxi, L., Hassen, F., Bouzaiene, L., Maaref, H., Salem, B., Bremond, G., Marty, O., Phys. Stat. Sol. A 199, 457 (2003) CrossRef
Colocci, M., Vinattieri, A., Lippi, L., Bogani, F., Rosa-Clot, M., Taddei, S., Bosacchi, A., Franchi, S., Frigeri, P., J. Appl. Phys. 74, 564 (1999)
Citrin, D.S., Superlattice Microstr. 13, 303 (1993) CrossRef
Markus, A., Fiore, A., Ganière, J.D., Oesterle, U., Chen, J.X., Deveaud, B., Ilegems, M., Riechert, H., Appl. Phys. Lett. 80, 911 (2002) CrossRef
Yu, H., Lycett, S., Roberts, C., Murray, R., Appl. Phys. Lett. 69, 4087 (1996) CrossRef