Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-21T15:22:55.587Z Has data issue: false hasContentIssue false

Extended generation profile - E.B.I.C model application in the case of a PN junction

Published online by Cambridge University Press:  15 January 2000

S. Guermazi
Affiliation:
Département de Physique, Institut Préparatoire aux Études d'Ingénieurs de Sfax, B.P. 805 Sfax, Tunisia
A. Toureille
Affiliation:
L.E.M, Université Montpellier II, Place Eugène Bataillon, 34000 Montpellier, France
C. Grill
Affiliation:
Laboratoire de Microscopie Électronique, Université Montpellier II, Place Eugène Bataillon, 34000 Montpellier, France
B. El Jani
Affiliation:
Laboratoire de Physique des Matériaux, Département de Physique, Faculté des Sciences de Monastir, Tunisia
Get access

Abstract

We have developed a model for the calculation of the induced current due to an electron beam with an extended generation profile. Added to the absorbed and diffuse electrons in the depth distribution, the generation profile takes into account the lateral diffusion. The analytical expression of the electron beam induced current (EBIC) is obtained by solving the continuity equation in permanent regime by the Green function method. The induced current profile, obtained in the case of a ternary component (Ga0.7Al0.3As:N+/Ga0.7Al0.3As:P) sulfur doped and prepared by organometallic compounds phase vapor epitaxy method, is compared to the theoretical profiles whose analytical expressions are given by Van Roosbroeck and Bresse. The experimental current profile, measured by S.E.M provided us to calculate the diffusion length of the minority carriers: Lp = 1 µm in the N region and Ln = 1.80 µm in the P region of the ternaire component. The theoretical curve obtained from the proposed model is in good agreement with the experimental one for a surface recombination velocity of 106 cm s−1. Our results are found to be consistent compared to those obtained by other experimental techniques using the same samples.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Guermazi, S., Toureille, A., Grill, C., El Jani, B., Lakhoua, N., J. Phys. III France 6, 481 (1996). CrossRef
Van Roosbroeck, W., J. Appl. Phys. 26, 380 (1955). CrossRef
Bresse, J.F., J. Microsc. Spectrosc. Electron 6, 17 (1981).
Wittry, D.B., Kyser, D.F., J. Appl. Phys. 36, 1387 (1965). CrossRef
Higuchi, H., Tamura, H., Jpn. J. Appl. Phys. 4, 316 (1965). CrossRef
Czaja, W., J. Appl. Phys. 37, 4236 (1966). CrossRef
Lengyel, G., Solid-State Electron. 17, 510 (1974). CrossRef
Leamy, H.J., J. Appl. Phys. 53, R51 (1982). CrossRef
Akamatsu, B., Henoc, J., Henoc, P., J. Appl. Phys. 52, 7245 (1981). CrossRef
Kanaya, K., Okayama, S., J. Phys. D Appl. Phys. 5, 43 (1972). CrossRef
Von Roos, O., Solid-State Electron. 21, 1063 (1978). CrossRef
P.H. Morse, H. Feshbach, Methods of theorical physics (New York, Toronto-London, 1953), Chap. 7, part I.
Jensen, B., J. Appl. Phys. 50, 5800 (1979). CrossRef
Zarem, H.A., Sercel, P.C., Lens, J.A., Eng, L.E., Yariv, A., Vahala, K.J., Appl. Phys. Lett. 55, 1647 (1989). CrossRef
Herlmann, R., Delgart, G., Mitdank, R., Jacobs, B., Phys. Status Solidi A 123, 539 (1991). CrossRef
Pavesi, L., Guzzi, M., J. Appl. Phys. 75, 4779 (1994). CrossRef