Hostname: page-component-5c6d5d7d68-thh2z Total loading time: 0 Render date: 2024-08-16T17:41:37.887Z Has data issue: false hasContentIssue false

Fabrication of graphene/polypyrrole nanotube/MnO2 nanotube composite and its supercapacitor application

Published online by Cambridge University Press:  05 July 2012

J. An
Affiliation:
School of Materials Science and Engineering, Beihang University, Beijing 100191, P.R. China
J. Liu*
Affiliation:
School of Materials Science and Engineering, Beihang University, Beijing 100191, P.R. China
Y. Ma
Affiliation:
School of Materials Science and Engineering, Beihang University, Beijing 100191, P.R. China
R. Li
Affiliation:
Jiangsu Electric Power Maintenance Branch Company, State Grid Corporation of China (SGCC), Nanjing 211102, Jiangsu, P.R. China
M. Li
Affiliation:
School of Materials Science and Engineering, Beihang University, Beijing 100191, P.R. China
M. Yu
Affiliation:
School of Materials Science and Engineering, Beihang University, Beijing 100191, P.R. China
S. Li
Affiliation:
School of Materials Science and Engineering, Beihang University, Beijing 100191, P.R. China
*

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A novel composite is fabricated through hybridizing graphene with polypyrrole (PPY) nanotube and manganese dioxide (MnO2) nanotube to comprehensively utilize the electrical double layer capacitance and pseudo-capacitance. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy are employed to characterize its structure. The SEM and TEM images illustrate that graphene/PPY nanotube/MnO2 nanotube composite (GPM) presents interconnected structure. The result of Raman analysis demonstrates the intimate interactions among PPY, graphene and MnO2. In addition, cyclic voltammetry (CV), galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS) techniques are used to measure the electrochemical properties. It is revealed that GPM presents excellent high-rate performance and its capacitance is as high as 469.5 Fg−1 at a current density of 0.3 Ag−1, higher than that of PPY and chemically reduced graphene sheet as well as the materials reported in the literature. Furthermore, long-term charge-discharge cycle test confirms that the fabrication of GPM can effectively merge the merits of graphene, PPY and MnO2. Additionally, EIS analysis illustrates that the presence of conductive graphene as well as the intimate interactions among graphene, PPY and MnO2 lead to the good electrochemical stability.

Type
Fast Track Article
Copyright
© EDP Sciences, 2012

References

Zhang, K. et al., Chem. Mater. 22, 1392 (2010)CrossRef
Wu, Q. et al., ACS Nano 4, 1963 (2010)CrossRef
Xu, J.J. et al., ACS Nano 4, 5019 (2010)CrossRef
Liu, D.Y., Reynolds, J.R., ACS Appl. Mater. Int. 2, 3586 (2010)CrossRef
Yan, X.B. et al., ACS Appl. Mater. Int. 2, 2521 (2010)CrossRef
Wang, H.L. et al., ACS Appl. Mater. Int. 2, 821 (2010)CrossRef
Lu, T. et al., J. Alloys Compd. 509, 5488 (2011)CrossRef
Wang, B. et al., J. Alloys Compd. 509, 7778 (2011)CrossRef
Fan, Z.J. et al., New Carbon Mater. 23, 149 (2008)
Liu, Y. et al., Rare Metal Mater. Eng. 37, 1285 (2008)CrossRef
Qin, C.L. et al., Mater. Chem. Phys. 126, 453 (2011)CrossRef
Qin, C.L. et al., Trans. Nonferrous Met. Soc. China 19, S738 (2009)CrossRef
Zhou, K.F. et al., New J. Chem. 34, 2950 (2010)CrossRef
Liu, L. et al., New J. Chem. 35, 1418 (2011)CrossRef
Yang, W.Z. et al., New J. Chem. 35, 780 (2011)CrossRef
Zhou, K.F. et al., New J. Chem. 35, 353 (2011)CrossRef
Dean, C.R. et al., Nat. Nanotechnol. 5, 722 (2010)CrossRef
Chen, D.Y. et al., ACS Appl. Mater. Int. 3, 3078 (2011)CrossRef
Fan, Z. et al., Adv. Mat. 22, 3723 (2010)CrossRef
Shen, X.P. et al., J. Alloys Compd. 506, 136 (2010)CrossRef
Xiang, H.F. et al., J. Alloys Compd. 509, 7205 (2011)CrossRef
Miller, J.R., Outlaw, R.A., Holloway, B.C., Science 329, 1637 (2010)CrossRefPubMed
Huang, Y., Liang, J., Chen, Y., Small 8, 1805 (2012)CrossRefPubMed
Zhang, K. et al., Chem. Mater. 22, 1392 (2010)CrossRef
Liu, S. et al., New J. Chem. 35, 369 (2011)CrossRef
Zhang, X. et al., J. Power Sourc. 173, 1017 (2007)CrossRef
Liu, J.H. et al., Eur. Phys. J. Appl. Phys. 57 (2012)CrossRef
Yang, C., Liu, P., Wang, T.M., ACS Appl. Mater. Int. 3, 1109 (2011)CrossRef
Amade, R. et al., J. Power Sourc. 196, 5779 (2011)CrossRef
Dubal, D.P. et al., J. Alloys Compd. 509, 8183 (2011)CrossRef
Snook, G.A., Kao, P., Best, A.S., J. Power Sourc. 196, 1 (2011)CrossRef
Otero, T.F., Padilla, J., J. Electroanal. Chem. 561, 167 (2004)CrossRef
Ye, C., Lin, Z.M., Hui, S.Z., J. Electrochem. Soc. 152, A1272 (2005)CrossRef
Yan, J. et al., Carbon 48, 3825 (2010)CrossRefPubMed
Biswas, S., Drzal, L.T., Chem. Mater. 22, 5667 (2010)CrossRef
Lee, J.H. et al., Nanotechnology 22, 29 (2011)
Ma, Y.W. et al., J. Power Sourc. 196, 5990 (2011)
Kim, K.S., Kim, I.J., Park, S.J., Synth. Met. 160, 2355 (2010)CrossRef
Karahan, M., Text Res. J. 78, 718 (2008)CrossRef
Malicka-Soczka, A. et al., Acta Phys. Pol. A 115, 599 (2009)CrossRef
Wang, L.Z. et al., in Proc. of the 2007 Int. Conf. on Advanced Fibers and Polymer Materials, vols. 1 and 2 (Donghua University, 2007), p. 410, http://www.clolib/item/21285.aspxGoogle Scholar
Zhao, Y.C. et al., Electrochim. Acta 56, 1967 (2011)CrossRef
Zhang, D.C. et al., J. Power Sourc. 196, 5990 (2011)CrossRef
Liu, J. et al., J. Electrochem. Soc. 159, A828 (2012)CrossRef
Cheng, Q. et al., Carbon 49, 2917 (2011)CrossRefPubMed
Fan, Z.J. et al., Carbon 48, 3825 (2010)PubMed
Wu, Z.S. et al., ACS Nano 4, 5835 (2010)CrossRef
Wang, G.X. et al., Electrochim. Acta 55, 6812 (2010)CrossRef
Cui, Y. et al., J. Am. Chem. Soc. 132, 13978 (2010)
Li, Z.P. et al., J. Power Sourc. 196, 8160 (2011)CrossRef
Shi, G.Q. et al., ACS Nano 4, 1963 (2010)
Tung, V.C. et al., Nat. Nanotechnol. 4, 25 (2009)CrossRef
Shi, Y. et al., Adv. Mater. 19, 461 (2007)
Yang, X.M. et al., Macromol. Rapid Comm. 26, 1736 (2005)CrossRef
Liu, A.R. et al., J. Phys. Chem. C 114, 22783 (2010)CrossRef
Drzal, L.T., Biswas, S., Chem. Mater. 22, 5667 (2010)
Liu, Y.C. et al., Thin Solid Films 374, 85 (2000)CrossRef
Xu, C.H., Sun, J., Gao, L., J. Mater. Chem. 21, 11253 (2011)CrossRef
Davies, A. et al., J. Phys. Chem. C 115, 17612 (2011)CrossRef
Sahoo, S. et al., Synth. Met. 161, 1713 (2011)CrossRef
Bose, S. et al., Nanotechnology 22, 295202 (2011)CrossRef
Han, Y.Q., Ding, B., Zhang, X.G., J. New Mater. Electrochem. Syst. 13, 315 (2010)
Lee, J. et al., AATCC Rev. 8, 43 (2008)