Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-17T06:04:12.766Z Has data issue: false hasContentIssue false

First stage of the structural evolution of austenite in Cu-Al-Ni shape memory alloys

Published online by Cambridge University Press:  15 July 2001

V. Pelosin*
Affiliation:
Laboratoire de Mécanique et de Physique des Matériaux ENSMA, BP 40109, 86961 Futuroscope-Chasseneuil, France
M. Gerland
Affiliation:
Laboratoire de Mécanique et de Physique des Matériaux ENSMA, BP 40109, 86961 Futuroscope-Chasseneuil, France
A. Rivière
Affiliation:
Laboratoire de Mécanique et de Physique des Matériaux ENSMA, BP 40109, 86961 Futuroscope-Chasseneuil, France
Get access

Abstract

Two shape memory Cu-Al-Ni alloys, a polycrystal and a single crystal, exhibiting a martensitic transformation close to 130 °C (in the as-quenched state) have been studied. Specimens have been quenched after heat treatment at 850 °C. The structural evolutions of the high temperature phase (austenite) have been studied for thermal treatments performed below 200 °C. Investigations have been carried out using electrical resistivity measurements, TEM (Transmission Electron Microscopy) observations and X-ray diffraction analysis. The main structural modifications are observed in the polycrystalline alloy and concern first, the reordering process of the austenite structure (B2$\to$L21), and second, the precipitation of the (Cu9Al4) γ2 phase. In the single crystal alloy, the evolutions are very slight and localized on the structural defects. Particular attention is paid to the role of the quenched-in vacancy elimination on the observed mechanisms. In addition, the incidence of the structural evolution on the transformation temperatures is also discussed.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ren, X., Otsuka, K., Phase Trans. 69, 329 (1999). CrossRef
Nakata, Y., Tadaki, T., Shimizu, K., Mat. Trans., JIM 31, 652 (1990).
M. Fremond, S. Miyazaki, Shape Memory Alloys, CISM Course and Lectures n $^\circ$ 351 (Springer, Wien New York, 1996).
Van Humbeeck, J., Chandrasekaran, M., Delaey, L., ISIJ Int. 29, 388 (1989). CrossRef
Rodriguez, P., Guenin, G., Mat. Sci. Eng. A 129, 273 (1990). CrossRef
Zárubová, N., Gemperle, A., Novák, V., Mat. Sci. Eng. A 222, 166 (1997). CrossRef
Kuwano, N., Wayman, C.M., Met. Trans. A 15, 621 (1984). CrossRef
Zárubová, N., Gemperle, A., Novák, V., J. Phys. IV France 7, C5-281 (1997). CrossRef
Dvorack, M.A., Kuwano, N., Polat, S., Chen, H., Wayman, C.W., Scr. Met. 17, 1333 (1983). CrossRef
A.C. Damask, G.J. Dienes, in Points Defects in Metals (Gordon and Breach Science Publishers, New York, 1963).
P.L. Rossiter, in The electrical resistivity of metals and alloys (Cambridge university press, 1987).
Wechsler, M.S., Kernohan, R.H., Acta Met. 7, 599 (1959). CrossRef
Varschavsky, A., Donoso, E., Mat. Sci. Eng. A 145, 95 (1991). CrossRef
Recarte, V., Pérez-Sáez, R.B., Bocanegra, E.H., , M.L., San Juan, J., Mat. Sci. Eng. A 273-275, 380 (1999). CrossRef
E. Cingonali, J. Van Humbeeck, M. Ahlers, Metal. Mat. Trans. 30 A, 493 (1999).