Hostname: page-component-5c6d5d7d68-lvtdw Total loading time: 0 Render date: 2024-08-07T07:36:21.786Z Has data issue: false hasContentIssue false

A half-analytical formulation for the impedance variation in axisymmetrical modelling of eddy current non destructive testing

Published online by Cambridge University Press:  14 December 2005

B. Maouche
Affiliation:
Laboratoire de Génie Électrique (LGE), Université A. Mira, route de Mézaïa Targa-Ouzamour, 06000 Bejaïa, Algeria
M. Feliachi*
Affiliation:
IREENA, LRTI-IUT-CRTT, boulevard de l'Université, BP 406, 44602 Saint-Nazaire Cedex, France
N. Khenfer
Affiliation:
Université F. Abbass, Cité Mabouda, 19000 Sétif, Algeria
Get access

Abstract

We present the calculation of the impedance variation using a half-analytical formulation based on coupled electromagnetic variables. Such a formulation concerns an axisymmetrical device constituted with a voltage supplied solenoïdal inductor and a conducting workpiece. In this field of modelling, authors have already developed a method [Maouche and Feliachi, J. Phys. III France 10, 1967 (1997)] that determines the current distribution inside inductor coil loops in the case of weak skin depth and a low number of these coil loops. In the proposed development, the number of loops is relatively large and the skin effect in these loops is negligible. This formulation uses a voltage excitation, which makes the source field depending on induced currents and permits to consider the real geometry of the inductor. The model is applied to study an eddy current non destructive testing (ECNDT) device. The variation of the system impedance is calculated in the case of an axisymmetrical device. The obtained modelling results are validated by comparison to measurements and finite element computations [Rémy, Ph.D. thesis, University of Compiègne, France, 1997; La et al., Rev. Prog. Quant. Non-Destructive Eval. 16A, 295 (1997)]. Once validated, the proposed model is applied to determine geometrical and physical characteristics of an ECNDT device. To assemble this interest, we visualise the evolution of the impedance variation according respectively to the air-gap, to the thickness of the workpiece and its electric conductivity. The model is implemented within a software tool (CECM: Coupling Electromagnetic Circuits Method) developed in Matlab environment.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

E. Cardelli, A. Faba, R. Fresa, S. Ventre, Numerical Modeling of eddy current non destructive evaluation by integral formulation and parallel implementation, Electromagnetic Nondestructive Evaluation (VIII), Vol. 24, T. Sollier et al. (Eds.) (IOS Press, 2004), pp. 27–35
Bowler, J.R., Jenkins, S.A., Sabbagh, L.D., Sabbagh, H.A, J. Appl. Phys. 70, 1107 (1991) CrossRef
Dodd, C.V., Deeds, W.E., J. Appl. Phys. 39, 2829 (1968) CrossRef
L.A. Rémy, Modélisation phénoménologique des signaux courants de Foucault en vue de la caractérisation des défauts des tubes de générateurs de vapeur, Ph.D. thesis, University of technologie de Compiègne, France, 1997
R. La, B. Benoist, B. de Barmon, R. Langellé, P. Gaillard, J. Reuchet, An Eddy Current Model Based on Parametric Description of Induced Current Loops, Review of Progress in Quantitative Non Destructive Evaluation, Vol. 16A (Plenum Press, New York, 1997), pp. 295–301
G. Berthiau, B. de Barmon, MESSINE, An Eddy Current Parametric Model for flaw characterization, Review of Progress in Quantitative Non Destructive Evaluation, QNDE98, Snowbird Utah, USA, 1998
Nair, S.M., Rose, J.H., J. Appl. Phys. 68, 5995 (1990) CrossRef
Lewis, A.M., J. Phys. D Appl. Phys. 25, 319 (1992) CrossRef
Antimorov, M.Ya., Kolyshkin, A.A., Vaillancourt, R., IEEE T. Magn. 30, 1247 (1994) CrossRef
Maouche, B., Feliachi, M., J. Phys. III France 7, 1967 (1997) CrossRef
E. Durand, Magnétostatique, Université de Paris VI, 1969
T.P. Theodoulidis, S.K. Burke, Electromagnetic Nondestructive Evaluation (VIII), Vol. 24, T. Sollier et al. (Eds.) (IOS Press, 2004), pp. 11–18
Babic, S., Akyel, C., Shepparrd, J., IEEE T. Magn. 39, 1131 (2003) CrossRef
M.L. Burrows, Theory of Eddy Current Flaw Detection, Ph.D. dissertation, University of Michigan, 1964