Hostname: page-component-7bb8b95d7b-cx56b Total loading time: 0 Render date: 2024-09-15T02:27:04.867Z Has data issue: false hasContentIssue false

Hysteresis of magnetic force-gap in static and dynamic magnetic levitation with a high-Tc superconductor

Published online by Cambridge University Press:  04 October 2008

X.-F. Gou*
Affiliation:
Department of Engineering Mechanics, Hohai University, 210098 Nanjing, P.R. China
Z.-X. Zhang
Affiliation:
Department of Engineering Mechanics, College of Science, Jiangsu University, 212013 Zhenjiang, P.R. China
Get access

Abstract

Hysteresis behavior of magnetic force versus gap between a high-Tc superconductor and a magnet, in static and dynamic cases, is studied numerically. Differing from the previous methods, based on macro electromagnetic constitutive relation of superconductors and Maxwell equations, a numerical method with the finite element method (FEM) is established. After numerical code is examined by comparing between numerical and experimental results of the relation of magnetic force-gap, the hysteresis curves of magnetic force-gap including major and minor loops in static case are simulated, and furthermore the dependences of major loop on main parameters including the critical current density and the thickness of superconductor, the residual magnetic field of magnet, and the diameter ratio of superconductor to magnet are studied numerically. In the case of free vibration, by investigating dynamic response of levitated body at different levitation/suspension positions in this magnetic levitation system, we obtain the corresponding results of the variation of magnetic force with gap. All the numerical results of the relation between magnetic force and gap show the strongly nonlinear and highly hysteretic behavior.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brandt, E.H., Science 243, 349 (1989) CrossRef
Hull, J.R., Supercond. Sci. Technol. 13, R1 (2000) CrossRef
F.C. Moon, Superconducting Levitation, 1st edn. (John Wiley & Sons, Inc., New York, 1994)
Wang, J.S., Wang, S.Y., Zeng, Y.W., Huang, H.Y., Luo, F., Xu, Z.P., Tang, Q.X., Lin, G.B., Zhang, C.F., You, R.Z., Zhao, G.M., Zhu, D.G., Wang, S.H., Jiang, H., Zhu, M., Deng, C.Y., Hu, P.F., Li, C.Y., Liu, F., Lian, J.S., Wang, X.R., Wang, L.H., Shen, X.M., Dong, X.G., Physica C 378–381, 809 (2002) CrossRef
M. Tosa, A.K. Yosihara, in Fourth International Symposium on Magnetic Suspension Technology, Vol. 179 (Hampton, VA, NASA, 1998)
Koshizuka, N., Ishikawa, F., Nasu, H., Murakami, M., Matsunaga, K., Saito, S., Saito, O., Nakamura, Y., Yamamoto, H., Takahata, R., Itoh, Y., Ikezawa, H., Tomita, M., Physica C 386, 444 (2003) CrossRef
Moon, F.C., Yanoviak, M.M., Ware, R., Appl. Phys. Lett. 52, 1534 (1988) CrossRef
Chang, P.Z., Moon, F.C., Hull, J.R., Mulcahy, T.M., J. Appl. Phys. 67, 4358 (1990) CrossRef
Riise, A.B., Johansen, T.H., Bratsberg, H., Physica C 234, 108 (1995) CrossRef
Hull, J.R., Cansiz, A., J. Appl. Phys. 86, 6396 (1999) CrossRef
Sanchez, A., Navau, C., Physica C 268, 45 (1996) CrossRef
Navau, C., Sanchez, A., Phys. Rev. B 64, 214507 (2001)
Qin, M.J., Li, G., Liu, H.K., Dou, H.X., Phys. Rev. B 66, 024516 (2002) CrossRef
Gou, X.F., Yang, Y., Zheng, X.J., Appl. Math. Mech. 25, 297 (2004)
Sugiura, T., Fujimori, H., IEEE Trans. Magn. 32, 1066 (1996) CrossRef
Bean, C.P., Phys. Rev. Lett. 8, 250 (1962)
Yoshida, Y., Uesaka, M., Miya, K., IEEE Trans. Magn. 30, 3503 (1994) CrossRef
Uesaka, M., Yoshida, Y., Takeda, N., Miya, K., Int. J. Appl. Electromagn. Mater. 4, 13 (1993)
Brandt, E.H., Appl. Phys. Lett. 53, 1554 (1988) CrossRef
Xiao, L., Ren, H.T., Jiao, Y.L., Zheng, M.H., Chin. J. Low Temp. Phys. 21, 317 (1999)
Zheng, X.J., Gou, X.F., Zhou, Y.H., IEEE Trans. Appl. Supercond. 15, 3856 (2005) CrossRef