Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-13T23:58:17.306Z Has data issue: false hasContentIssue false

A multi-valley model for hot free-electron nonlinearities at 10.6 μm in highly doped n-GaAs

Published online by Cambridge University Press:  15 December 2000

G. Shkerdin
Affiliation:
Institute of Radio Engineering and Electronics of RAS, Vvedensky Square 1, 141120 Fryazino (Moscow Region), Russia
J. Stiens*
Affiliation:
Vrije Universiteit Brussel, Lab. for Micro and Optoelectronics, Electronics Department, Pleinlaan 2, 1050 Brussels, Belgium
R. Vounckx
Affiliation:
Vrije Universiteit Brussel, Lab. for Micro and Optoelectronics, Electronics Department, Pleinlaan 2, 1050 Brussels, Belgium
Get access

Abstract

When the frequency of infrared light and the plasma frequency of highly doped n-GaAs are in resonance (e.g. for a doping concentration N = 7 × 1018cm−3 and a wavelength $\lambda=10.6 \mu$m), the free-electron induced optical nonlinearity is soundly pronounced. At such high doping concentrations it is necessary to extend the rigid quantum mechanical description of the free-electron induced nonlinearity to a multi-valley model. The central valley of GaAs was treated as a fully nonparabolic degenerated electron gas, whereas the satellite valley was modeled as an anisotropic electron gas of arbitrary degeneracy. The following intra- and intervalley absorption mechanisms were taken into account: impurity assisted, thermal and hot polar optical phonon assisted intravalley absorption on one hand and intervalley phonon assisted absorption in equivalent and nonequivalent intervalley absorption on the other hand. The dependence of the different absorption and energy relaxation mechanisms on the doping concentration, free electron heating, optical power density and the equivalent LL-intervalley deformation potential are discussed. We demonstrated for the first time that the behavior of the optical intervalley nonlinearity, i.e. the nonlinear absorption and nonlinear intervalley transfer, strongly depend on the equivalent LL-intervalley deformation potential. In the linear regime the model calculations are in good agreement with experimental results.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Patel, C.K., Slusher, R.E., Fleury, P.A., Phys. Rev. Lett. 17, 1011 (1966). APS Link not valid for this citation CrossRef
Auyang, S.Y., Wolff, P.A., Harris, K.A., Cook Jr, J.W.., J.F. Schetzina, J. Vac. Sci. Technol. A 6, 2693 (1988). CrossRef
Wolff, P.A., Yuen, S.Y., Harris, K.A., Cook Jr, J.W.., J.F. Schetzina, Appl. Phys. Lett. 40, 457 (1987).
Yuen, S.Y., Wolff, P.A., Ram-Mohan, R., Solid State Commun. 56, 485 (1985). CrossRef
Miller, D.A., Seaton, C.T., Prise, M.E., Smith, S.D., Phys. Rev. Lett. 47, 197 (1981). CrossRef
Kash, K., Wolff, P.A., Bonner, W.A., Appl. Phys. Lett. 42, 173 (1983). CrossRef
Auyang, S.Y., Wolff, P.A., J. Opt. Soc. Am. B 6, 595 (1989). CrossRef
Shkerdin, G., Voronko, A.I., Kumekov, S.E., J. Phot. Optoelectron. 1, 193 (1993).
Gunn, J.B., Solid State Commun. 1, 88 (1963). CrossRef
Shkerdin, G., Stiens, J., Vounckx, R., J. Appl. Phys. 87, 3792 (1999). CrossRef
Stiens, J., Vounckx, R., J. Appl. Phys. 76, 3526 (1994). CrossRef
Shkerdin, G., Stiens, J., Vounckx, R., J. Appl. Phys. 87, 3807 (1999). CrossRef
Chin-Yi Tsai, et al., IEEE J. Quantum Electron. 34, 552 (1998). CrossRef
Haga, E., Kimura, H., J. Phys. Soc. Jap. 19, 1596 (1964). CrossRef
Zollner, S., Gopalan, S., Cardona, M., J. Appl. Phys. 68, 1682 (1990). CrossRef
Berthold, K., Levi, A.F., Walker, J., Malik, R.L., Appl. Phys. Lett. 54, 813 (1989). CrossRef
Jordan, A.S., J. Appl. Phys. 51, 2218 (1980). CrossRef
B.R. Nag, Electron Transport in Compound Semiconductors, Springer Series in Solid-State Sciences 11 (Springer-Verlag, Berlin, 1980).
Blakemore, J.S., J. Appl. Phys. 53, R123 (1982). CrossRef
Kumekov, S.E., Perel, V.I., Sov. Phys. JETP 67, 193 (1988).
Vaissiere, J.C., Nougier, J.P., Fadel, M., Hlou, L., Kocevar, P., Phys. Rev. B 46, 13082 (1992). CrossRef
Adachi, S., J. Appl. Phys. 58, R1 (1985). CrossRef
Shah, J., Deveaud, B., Damen, T.C., Tsang, W.T., Cossard, A.C., Lugli, P., Phys. Rev. Lett. 59, 2222 (1987). CrossRef
Littlejohn, M.A., Hauser, J.R., Glisson, T.H., J. Appl. Phys. 48, 4587 (1977). CrossRef
Spitzer, W.G., Whelan, J.M., Phys. Rev. 114, 59 (1959). CrossRef
M. Levinshtein, S. Rumyantsev, M. Shur, Handbook on Semiconductor Parameters (World Scientific, London, 1996), Vol. 1.
S. Adachi, Physical Properties of III-V Semiconductors and Compounds InP, InAs, GaAs, GaP and InGaAsP (A Wiley-Interscience Publication, 1992).