Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-27T20:56:35.108Z Has data issue: false hasContentIssue false

Non-faradic carbon nanotube-based supercapacitors: state of the art

Analysis of all the main scientific contributions from 1997 to our days

Published online by Cambridge University Press:  31 October 2012

P. Bondavalli*
Affiliation:
UMR 137, CNRS/Thales Research and Technology, rue A. Fresnel 1, 91767 Palaiseau, France
D. Pribat
Affiliation:
DOES, Department Of Energy Science, Sun Kyun Kwan University, Suwon, South Korea
J.-P. Schnell
Affiliation:
Nanocarb Laboratory, Thales Research and Technology, rue A. Fresnel 1, 91767 Palaiseau, France
C. Delfaure
Affiliation:
UMR 137, CNRS/Thales Research and Technology, rue A. Fresnel 1, 91767 Palaiseau, France
L. Gorintin
Affiliation:
Nanocarb Laboratory, Thales Research and Technology, rue A. Fresnel 1, 91767 Palaiseau, France
P. Legagneux
Affiliation:
Nanocarb Laboratory, Thales Research and Technology, rue A. Fresnel 1, 91767 Palaiseau, France
L. Baraton
Affiliation:
LPICM, NanoMade, École polytechnique, 91128 Palaiseau, France
C. Galindo
Affiliation:
Chemistry Laboratory, Thales Research and Technology, rue A. Fresnel 1, 91767 Palaiseau, France

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This contribution deals with the state of the art of studies concerning the fabrication of electric double-layer capacitors (EDLCs) also called super- or ultracapacitors and obtained using carbon nanotubes (CNTs) without exploiting Faradic reactions. From the first work published in 1997, EDLCs fabricated using carbon nanotubes as constitutive material for electrodes showed very interesting characteristics. It appeared that they could potentially outperform traditional technologies based on activated carbon. Different methods to fabricate the CNT-based electrodes have been proposed in order to improve the performances (mainly energy densities and power densities), for example filtration, direct growth on metal collector or deposition using an air-brush technique. In this contribution we will introduce the main works in the field. Finally, we will point out an emerging interest for supercapacitors fabricated on flexible substrates, exploiting the outstanding mechanical performances of CNTs, for new kinds of applications such as portable electronics.

Type
Fast Track Article
Copyright
© EDP Sciences, 2012

References

Miller, J.R., in in Electrochemical Capacitors, edited by Delnick, F.M., Tomkiewicz, M. (The Electrochemical Society Proceedings Series, Pennington, NJ, 1996), pp. 246254Google Scholar
Conway, B.E., Electrochemical Fundamentals and Technological Applications (Kuwer Academic/Plenum, New York, 1999)Google Scholar
Miller, J.R., Simon, P., Science 231, 651 (2008)CrossRef
Becker, H.I., US patent 2800616 (1957)
Rightmire, R., US patent 3288641 (1962)
Boos, D.L., US patent 353963 (1966)
Miller, J.R., Battery Energy Storage Technol. 18, 61 (2007)
Bullard, G.L., Sierra-Alcazar, H.B., Lee, H.L., Morris, J.L., IEEE Trans. Magn. 25, 102 (1988)CrossRef
Bansal, R.C., in Handbook of Automotive Power Electronics and Motor Drive, edited by Emadi, A. (CRC Press, Boca Raton, FL, 2005)Google Scholar
Miyadera, K., Toyota Tech. Rev. 52, 22 (2002)
Rodatz, P., Garcia, O., Guzzella, L., Buchi, F., Scherer, G., Wokaun, A., SAE Int. Publ. Paper 2003-01-0418 (2003)
Armand, M., Tarascon, J.M., Nature 414, 359 (2001)
Simon, P., Gogotsi, Y., Nat. Mater. 7, 845 (2008)CrossRef
Miller, J.R., Burke, A.F., Electrochem. Soc. Interface 17, 53 (2008)
Obreja, V.V.N., in Proc. of the Int. Conf. on Renewable Energies and Power Quality, vol. 329 (2007)Google Scholar
Pandolfo, A.G., Hollenkamp, A.F., J. Power Sources 157, 11 (2006)CrossRef
Mahon, P.J., Paul, G.L., Keshishian, S.M., Vassallo, A.M., J. Power Sources 91, 68 (2000)CrossRef
Frackowiak, E., Beguin, F., Carbon 39, 937 (2001)CrossRef
Frackowiak, E., J. Braz. Chem. Soc. 17, 1074 (2006)CrossRef
Frackowiak, E., Phys. Chem. Chem. Phys. 9, 1774 (2007)CrossRef
Chen, Y.M., Cai, J.H., Huang, Y.S., Lee, K.Y., Tsai, D.S., Nanotechnology 22, 11 (2011)
Simon, P., Burke, A., Electrochem. Soc. Interface 17, 38 (2008)
Huang, S., Dai, L., J. Phys. Chem. B 106, 3543 (2002)CrossRef
Li, Q.Y., Wang, H.Q., Dai, Q.F., Yang, J.H., Zhong, Y.L., Solid State Ion. 179, 269 (2008)CrossRef
Chmiola, J., Yushin, G., Gogotsi, Y., Portet, C., Simon, P., Taberna, P.L., Science 313, 1760 (2006)CrossRef
Raymundo-Pinero, E., Leroux, F., Beguin, F., Adv. Mat. 18, 1877 (2006)CrossRef
Fuertes, A.B., Lota, G., Centeno, T.A., Frackowiak, E., Electrochim. Acta 50, 2799 (2005)CrossRef
Hulicova, D., Yamashita, J., Soneda, Y., Hatori, H., Kodama, M., Chem. Mater. 17, 1241 (2005)CrossRef
Leitner, K., Lerf, A., Winter, M., Besenhard, J.O., Villar-Rodil, S., Suarez-Garcia, F., Martinez-Alonso, A., Tarascon, J.M.D., J. Power Sources 153, 419 (2000)CrossRef
Pognon, G., Brousse, T., Demarconnay, L., Bélange, D.J., J. Power Sources 196, 4117 (2011)CrossRef
Wu, N.L., Wang, S.Y., J. Power Sources 110, 233 (2002)CrossRef
Portet, C., Taberna, P.L., Simon, P., Laberty-Robert, C., Electrochim. Acta 49, 205 (2005)
Kim, C., Yang, K.S., Appl. Phys. Lett. 83, 1216 (2003)CrossRef
Obreja, V.V.N., Physica E 40, 2596 (2008)CrossRef
Vix-Guterl, C., Saadallah, S., Jurewicz, K., Frackowiak, E., Reda, M., Parmentier, J., Patarin, J., Beguin, F., Mater. Sci. Eng. B 108, 148 (2004)CrossRef
Kim, Y.J., Horie, Y., Ozaki, S., Matsuzawa, Y., Suezaki, H., Kim, C., Carbon 42, 1491 (2004)CrossRefPubMed
Mayer, S.T., Pekala, R.W., Kaschmitter, J.L., J. Electrochem. Soc. 140, 446 (1993)CrossRef
Tanahashi, I., Yoshida, A., Nishino, A., J. Electrochem. Soc. 137, 3052 (1990)CrossRef
Kastening, B., Sprinzig, S., J. Electroanal. Chem. 214, 295 (1986)CrossRef
Conway, B.E., J. Electrochem. Soc. 138, 1539 (1991)CrossRef
Pekala, R.W., Mayer, S.T., Poco, J.F., Kaschmitter, J.L., Mater. Res. Soc. Symp. Proc. 349, 79 (1994)CrossRef
Burke, F., Murphy, T.C., Mater. Res. Soc. Symp. Proc. 393, 375 (1995)CrossRef
Qu, D., Shi, H., J. Power Sources 74, 99 (1998)CrossRef
Nakagawa, H., Shudo, A., Miura, K., J. Electrochem. Soc. 147, 38 (2000)CrossRef
Niu, C., Sichel, E.K., Hoch, R., Moy, D., Tennent, H., Appl. Phys. Lett. 70, 1480 (1997)CrossRef
Mayer, S.T., Pekala, R.W., Kaschmitter, J.L., J. Electrochem. Soc. 140, 446 (1993)CrossRef
Ma, R., Liang, J., Wie, B.Q., Zhang, B., Xu, C., Wu, D.H., J. Power Sources 84, 126 (1999)CrossRef
Frackowiak, E., Metenier, K., Bertagna, V., Beguin, F., Appl. Phys. Lett. 77, 15 (2000)CrossRef
Frackowiak, E., Delpeux, S., Jurewicz, K., Szostak, K., Cazorla-Amorós, D., Beguin, F., Chem. Phys. Lett. 261, 35 (2002)CrossRef
Raymundo-Piñero, E., Azaïs, P., Cacciaguerra, T., Cazorla-Amorós, D., Linares-Solano, A., Béguin, F., Carbon 43, 786 (2005)CrossRef
Duclaux, A., Laurent, B., Gadiou Roger, C., Yoshizawa Noriko, S.Y., Carbon: Sci. Technol. 3, 120 (2009)
Liu, C.Y., Bard, A., Wudl, F., Weitz, I., Heath, J.R., Electrochem. Solid State Lett. 2, 577 (1999)CrossRef
Barisci, J.N., Wallace, G., Baughman, R.H., J. Electrochem. Soc. 147, 4580 (2000)CrossRef
McCreery, R.L., in Electroanalytical Chemistry, edited by Brad, A.J., vol. 17 (Marcel Dekker, NewYork, 1990), p. 221Google Scholar
Che, G., Lakshmi, B.B., Fisher, E.R., Martin, C.R., Nature 393, 346 (1999)
Rinzler, A.G., Liu, J., Dai, H., Nikolaev, P., Hoffman, C.B., Rodriguesmacias, F.J., Boul, P.J., Liu, A.H., Colbert, D.T., Fisher, R.S., Rao, A.M., Eklund, P.C., Smalley, R.E., Appl. Phys. Lett. 67, 29 (1998)
An, K.H., Kim, W.S., Park, Y.S., Moon, J.M., Bae, D.J., Lim, S.C., Adv. Funct. Mater. 11, 387 (2001)3.0.CO;2-G>CrossRef
Shiraishi, S., Kurihara, H., Okabe, K., Hulicova, D., Oya, A., Electrochem. Commun. 4, 593 (2002)CrossRef
Kaneko, K., Ishii, C., Ruike, M., Kuwabarra, H., Carbon 30, 1075 (1992)CrossRef
An, K.H., Kim, W.S., Park, Y.S., Choi, Y.C., Lee, S.M., Chung, Bae, D.J., Lim, S.C., Lee, Y.H., Adv. Mat. 13, 497 (2001)3.0.CO;2-H>CrossRef
Emmenegger, Ch., Mauron, P., Zuttel, A., Nutzenadel, Ch., Schneuwly, A., Gallay, R., Appl. Surf. Sci. 162–163, 452 (2000)CrossRef
Chen, J.H., Li, W.Z., Wang, D.Z., Yang, S.X., Wen, J.G., Ren, Z.F., Carbon 40, 1193 (2002)CrossRef
Ren, Z.F., Huang, Z.P., Xu, J.W., Wang, J.H., Bush, P., Siegal, M.P., Provencio, P.N., Science 282, 1105 (1998)CrossRef
Yoon, B.J., Jeong, S.H., Lee, K.H., Kim, H.S., Park, C.G., Han, J.H., Chem. Phys. Lett. 388, 170 (2004)CrossRef
Huang, S., Dai, L., J. Phys. Chem. B 106, 3543 (2006)CrossRef
Frackowiak, E., Béguin, F., Carbon 40, 1775 (2002)CrossRef
Kim, B., Chung, H., Kim, W., Nanotechnology 23, 155401 (2012)CrossRef
Kim, J.H., Nam, K.W., Ma, S.B., Kim, K.B., Carbon 44, 1963 (2006)CrossRef
Yoon, W.S., Kim, K.B., Kim Lee, J., J. Power Sources 97–98, 282 (2001)CrossRef
Shu, D., Chung, K.Y., Cho, W.I., Kim, K.B., J. Power Sources 114, 253 (2003)CrossRef
Schoonman, J., Solid State Ion. 135, 5 (2000)CrossRef
Du, C., Pan, N., J. Mater. Chem. 15, 548 (2005)CrossRef
Du, C., Pan, N., J. Power Sources 160, 1487 (2006)CrossRef
Du, C., Pan, N., Nanotechnology 17, 5314 (2006)CrossRef
Boccaccini, A.R., Cho, J., Roether, J.A., Thomas, B.J.C., Minay, E.J., Carbon 44, 3149 (2006)CrossRef
Cho, J., Konopka, K., Rożniatowski, K., García-Lecina, E., Shaffer, S.P.M., Boccaccini, A.R., Carbon 47, 58 (2009)CrossRef
Corni, I., Ryan, M.P., Boccaccini, A.R., J. Eur. Ceram. Soc. 28, 1353 (2008)CrossRef
Russ, B.E., Talbot, J.B., J. Electrochem. Soc. 145, 1245 (1998)CrossRef
Van der Biest, O., Vandeperre, L., J. Annu. Rev. Mater. Sci. 29, 327 (1999)CrossRef
Siracus, J.A., Talbot, J.B., Sluzky, E., Hesse, K.R., J. Electrochem. Soc. 137, 346 (1990)CrossRef
Park, J.O., Ko, J.M., Park, O., J. Electrochem. Soc. 150, A864 (2003)CrossRef
Subramanian, V., Zhu, H., Wei, B., Electrochem. Commun. 8, 827 (2006)CrossRef
Ma, S.B., Nam, K.W., Yoon, W.S., Yang, X.Q., Ahn, K.Y., Oh, K.H., Kim, K.B., J. Power Sources 178, 483 (2008)CrossRef
Xie, X., Gao, L., Carbon 45, 2365 (2007)CrossRef
Shiraishi, S., Kurihara, H., Oya, A., Carbon Sci. 1, 133 (2001)
Shiraishi, S., Kurihara, H., Oya, A., Electrochemistry 69, 297 (2001)
Shiraishi, S., Kurihara, H., Shi, L., Nakayama, T., Oya, A., J. Electrochem. Soc. 149, A835 (2002)CrossRef
Zhang, H., Cao, G., Yang, Y., Gu, Z., J. Electrochem. Soc. 155, K19 (2008)CrossRef
Zhang, H., Cao, G., Yang, Y., Wang, Z., Yang, Y., Shi, Z., Gu, Z., Nano Lett. 8, 2644 (2008)
Futaba, D.N., Hata, K., Yamada, T., Hiraoka, T., Hayamizu, Y., Kakudate, Y., Tanaike, O., Yumura, O.H.M., Iijima, S., Nat. Mater. 5, 987 (2006)CrossRef
Zhang, M., Fang, S., Zakhidov, A.A., Lee, S.B., Aliev, A.E., Williams, C.D., Atkinson, K.R., Baughman, R.H., Science 309, 1215 (2005)CrossRef
Nguyen, C.V., Nano Lett. 2, 1079 (2005)CrossRef
Liu, H., Jin, S.L., Huanjun, Z., Zheng, L.Q., Jiang, L., Zhu, D., Angew. Chem. 43, 1146 (2004)CrossRef
Whitten, P.G., Spinks, G.M., Wallace, G.G., Carbon 43, 1891 (2005)CrossRef
Izadi-Najafabadi, A., Futaba, D.N., Electrochem. Commun. 12, 1678 (2010)CrossRef
Zhao, X., Chu, B.T., Ballestreros, B., Wang, W., Johnston, C., Sykes, J.M., Grant, P.S., Nanotechnology 20, 065605 (2009)CrossRef
Kaempgen, M., Chan, C.K., Ma, J., Cui, Y., Gruner, G., Nano Lett. 5, 1872 (2009)CrossRef
Pushparaj, V.L., Shaijumon, M.M., Kumar, A., Murugesan, S., Ci, L., Vajtai, R., Linhardt, R.J., Nalamasu, O., Ajayan, P.M., Proc. Natl. Acad. Sci. USA 104, 13574 (2007)CrossRef
Hu, L., Wui, H., Cui, Y., Appl. Phys. Lett. 96, 183502 (2010)CrossRef
Hu, L., Choi, J.W., Yang, Y., Jeong, S., Lamantia, F., Cui, L.F., Cui, Y., Proc. Natl. Acad. Sci. USA 106, 21490 (2009)CrossRef