Hostname: page-component-84b7d79bbc-rnpqb Total loading time: 0 Render date: 2024-07-26T21:28:24.385Z Has data issue: false hasContentIssue false

Precise in situ measurements of isotopic abundances withpulse counting of sputtered ions

Published online by Cambridge University Press:  15 June 2001

G. Slodzian*
Affiliation:
Laboratoire de Physique des Solides, Bât. 510, Université Paris-Sud, 91405 Orsay, France
M. Chaintreau
Affiliation:
Laboratoire de Physique des Solides, Bât. 510, Université Paris-Sud, 91405 Orsay, France
R. Dennebouy
Affiliation:
Laboratoire de Physique des Solides, Bât. 510, Université Paris-Sud, 91405 Orsay, France
A. Rousse
Affiliation:
Laboratoire de Physique des Solides, Bât. 510, Université Paris-Sud, 91405 Orsay, France
Get access

Abstract

Ion counting with an electron multiplier (EM) is necessary when sputtered ions are used for in situ and precise isotopic abundance measurements (10−4$(1\sigma)$) on small sample volume (about 100 μm3 for pure silicon). Measurements were performed on silicon samples bombarded with Cs+ ions by extracting negative secondary monatomic Si ions. Pulse-height distributions (PHD) and isotopic ratios were used as diagnostic tools for repeatability studies. Repeatability could be greatly improved by determining the optimal position of the impact area on the conversion dynode and by addressing each isotopic beam properly focused on this area (adaptive optics). A simplified model based on Poisson's laws was developed to fit PHDs and allowed us to calculate quantum detection efficiencies versus thresholds. EM isotopic discriminations were determined with the resulting semiempirical algorithm so as to reconstruct the lost information and get data independent of threshold setting. To reach consistent results, quasi-simultaneous arrivals (QSA) on the conversion dynode had to be assumed and modelled using direct ionisation yields Si/ Cs+ at different collection efficiencies. The QSA corrected data fitted well on the terrestrial isotopic fractionation line. Dead time uncertainties and possible emission non-linear isotopic fractionation processes were examined. PHDs from other elements and polyatomic ions were also discussed.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Prescott, J.R., Nucl. Instrum. Methods 39, 173 (1966). CrossRef
Dietz, L.A., Rev. Sci. Instrum. 36, 1763 (1965). CrossRef
Dietz, L.A., Int. J. Mass Spectrom. Ion Phys. 5, 11 (1970). CrossRef
Dietz, L.A., Sheffield, J.C., Rev. Sci. Instrum. 44, 183 (1973). CrossRef
Dietz, L.A., Sheffield, J.C., J. Appl. Phys. 46, 4361 (1975). CrossRef
Winter, H., Aumayr, F., Lakits, G., Nucl. Instrum. Methods Phys. Res. B 58, 301 (1991). CrossRef
Bernheim, M., Radiat. Effects 18, 157 (1973). CrossRef
I.C. Lyon, J.M. Saxton, in Proceedings of XIth International Conference on Secondary Ion Mass Spectrometry, Orlando (Florida), 1997 (John Wiley, Chichester), pp. 55-58.
Krohn, V.E., J. Appl. Phys. 33, 3523 (1962). CrossRef
Williams, P., Lewis, R.K., Evans, C.A.J., Hanley, P.R., Nucl. Instrum. Methods 149, 567 (1978). CrossRef
M. Bernheim, G. Slodzian, in IIIrd International Conference on Secondary Ion Mass Spectrometry, Budapest, 1981 (Springer Verlag, Berlin), pp. 151-158.
G. Slodzian, T.D. Wu, R. Dennebouy, M. Chaintreau, B. Rasser, in Proceedings of Xth International Conference on Secondary Ion Mass Spectrometry, Muenster (Germany), 1995 (John Wiley, Chichester), pp. 31-38.
G. Slodzian, J.C. Lorin, R. Dennebouy, A. Havette, in Proceedings of IVth International Conference on Secondary Ion Mass Spectrometry, Osaka (Japan), 1983 (Springer Verlag, Berlin), pp. 153-157.
G. Slodzian, R. Dennebouy, M. Chaintreau, B. Rasser, in Proceedings of XIth International Conference on Secondary Ion Mass Spectrometry, Orlando (Florida), 1997 (John Wiley , Chichester), pp. 29-34.
G. Slodzian, R. Dennebouy, M. Chaintreau, G. Rousse, in Proceedings of XIIth International Conference on Secondary Ion Mass Spectrometry, Brussels (Belgium), 1999 (Elsevier, Amsterdam), pp. 1007-1010.
Barnes, I.L., Moore, L.J., Machlan, L.A., Murphy, T.J., Shields, W.R., J. Res. Nat. Bur. Stand. 79A, 727 (1975). CrossRef
A.D. Cutter, H.L. Hunter, R.W. Stresau, P.J.K. Paterson, in Proceedings of 42nd ASMS Conference on Mass Spectrometry and Allied Topics, Chicago, Illinois, 1994.
F. Boust, Thesis, Université de Paris-Sud, Centre d'Orsay, 1989.
M. Kaminsky, Atomic and ionic impact phenomena on metal surfaces (Springer Verlag, 1965).
Breitenberger, G., Prog. Nucl. Phys. 4, 56 (1955).
M. Bernheim, private communication.
Confiantini, R., De Bièvre, P., Valkiers, S., Taylor, P.D.P., IEEE Trans. Instrum. Meas. 46, 566 (1997). CrossRef
De Bièvre, P., Valkiers, S., Taylor, P.D.P., Fresenius J. Anal. Chem. 361, 227 (1998).
Tilles, D., J. Geophys. Res. 66, 3003 (1961). CrossRef
McKeegan, K.D., Walker, R.M., Zinner, E., Geochem. Cosmochem. Acta 49, 1971 (1985). CrossRef
Molini-Velsko, C., Mayeda, T.K., Clayton, N., Geochem. Cosmochem. Acta 50, 2719 (1986). CrossRef
Thompson, D.A., Radiat. Effects 56, 105 (1981). CrossRef
G. Betz, W. Husinsky, in XIIth International Conference on Secondary Ion Mass Spectrometry, Brussel, Belgium, 1999 (Elsevier, Amsterdam), pp. 13-20.
Y. Morishita, N.T. Kita, S. Togashi, in Proceedings of XIIth International Conference on Secondary Ion Mass Spectrometry, Bussels (Belgium), 1999 (Elsevier, Amsterdam), pp. 1003-1006.
Dietz, L.A., Hanrahan, L.R., Rev. Sci. Instrum. 49, 1250 (1978). CrossRef