Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-14T05:08:35.865Z Has data issue: false hasContentIssue false

Supersonic Fe beam source for chromatic aberration-free laser focusing ofatoms

Published online by Cambridge University Press:  06 June 2002

R. C. M. Bosch
Affiliation:
Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB  Eindhoven, The Netherlands
H. C. W. Beijerinck
Affiliation:
Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB  Eindhoven, The Netherlands
P. van der Straten
Affiliation:
Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB  Eindhoven, The Netherlands
K. A. H. van Leeuwen*
Affiliation:
Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB  Eindhoven, The Netherlands
Get access

Abstract

A monochromatic Fe beam is generated by heated supersonic expansion of argon seeded with Fe vapor. At a nozzle temperature of 1930 K and 800 torr argon inlet pressure the Fe beam has an axial velocity spread of 8% and intensity of 3 × 1015 s−1 sr−1, corresponding to a deposition rate of 10 nm/h at 150 mm from the nozzle. The two-chamber alumina crucibles are chemically stable for liquid Fe. With 400 mm3 Fe we have operated for more than 200 hours without reloading. The power consumption at 1930 K is 750 W. Temperature stability at constant power (without feedback) is better than 30 K. The source is intended for deposition of nanostructures by laser focusing of the Fe beam. The small axial velocity spread virtually eliminates the increase in focal spot size due to chromatic aberration.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

S.J.H. Petra, L. Feenstra, W. Vassen, W. Hogervorst, Int. Quantum Electron. Conference CLEO/Europe-IQEC 2000, Nice, France
Brezger, B., Schulze, Th., Drodofsky, U., Stuhler, J., Nowak, S., Pfau, T., Mlynek, J., J. Vac. Sci. Technol. B 15, 2905 (1997) CrossRef
Engels, P., Salewski, S., Levsen, H., Sengstock, K., Ertmer, W., Appl. Phys. B 69, 407 (1999) CrossRef
Berggren, K.K., Bard, A., Wilbur, J.L., Gillaspy, J.D., Helg, A.G., McClelland, J.J., Rolston, S.L., Phillips, W.D., Prentiss, M., Whitesides, G.M., Science 269, 1255 (1995) CrossRef
Lison, F., Adams, H.J., Schuh, P., Haubrich, D., Meschede, D., Appl. Phys. B 65, 419 (1997) CrossRef
Timp, G., Behringer, R.E., Tennant, D.M., Cunningham, J.E., Phys. Rev. Lett. 69, 1636 (1992) CrossRef
McClelland, J.J., Scholten, R.E., Palm, E.C., Celotta, R.J., Science 262, 877 (1993) CrossRef
McGowan, R.W., Giltner, D., Siu Au Lee, Opt. Lett. 20, 2535 (1995) CrossRef
Himpsel, F.J., Ortega, J.E., Mankey, G.J., Willis, R.F., Adv. Phys. 47, 511 (1998) CrossRef
Hoogerland, M.D., Driessen, J.P.J., Vredenbregt, E.J.D., Megens, H.J.L., Schuwer, M.P., Beijerinck, H.C.W., van Leeuwen, K.A.H., Appl. Phys. B 62, 323 (1996) CrossRef
Beijerinck, H.C.W., Verster, N.F., Physica C 111, 327 (1981) CrossRef
R.C.M. Bosch, Vacuum Solutions 17, March/April 2000
Hagena, O.F., Z. Phys. D 20, 425 (1991) CrossRef
J.B. Anderson, Molecular beams and low density gas dynamics, edited by P.P. Wegener (Dekker, New York, 1974), Vol. 1
Campargue, R., Rev. Sci. Instrum. 35, 111 (1964) CrossRef
Beijerinck, H.C.W., van Gerwen, R.J.F., Kerstel, E.R.T., Martens, J.F.M., van Vliembergen, E.J.M., Smits, M.R.Th., Kaashoek, G.H., Chem. Phys. 96, 153 (1985) CrossRef
D.R. Miller, R. Andres, Rarefied Gas Dynamics, Proc. VI Symp. (Academic Press, New York, 1969), Vol. 2, p. 1385
Hagena, O.F., Knop, G., Fromknecht, R., Linker, G., J. Vac. Sci. Technol. A 12, 282 (1994) CrossRef