Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-27T19:34:12.498Z Has data issue: false hasContentIssue false

Thermal conductivity prediction of mesoporous composites (Cu/MCM-41)

Published online by Cambridge University Press:  10 June 2014

Congliang Huang
Affiliation:
School of Electric Power Engineering, China University of Mining and Technology, Xuzhou 221116, P.R. China School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
Yanhui Feng*
Affiliation:
School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
Xinxin Zhang
Affiliation:
School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
Ge Wang
Affiliation:
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
Get access

Abstract

The thermal conductivity of the mesoporous composites Cu/MCM-41 was studied to provide some useful data for promising applications. Both of the lattice and electronic thermal conductivities of Cu nanowires with different size were predicted. With the shell of the matrix MCM-41 and the air confined in the mesochannels considered, the effective thermal conductivity (EffTC) of composites Cu/MCM-41 was obtained. The EffTC shows a great anisotropy. The EffTC along the Z direction (axial of the mesochannel) is much lower than that along directions perpendicular to the axial. It is unnecessary to further raise the filling ratio of Cu nanowires for improving the EffTC along the directions perpendicular to the axial, since the filling ratio 20% is high enough. As long as there is a void space in the mesochannel, the EffTC along the Z direction will be as low as the thermal conductivity of the matrix MCM-41, due to the large thermal resistance of the void space in mesochannels.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Coquil, T. et al., J. Appl. Phys. 106, 034910 (2009)CrossRef
Bippus, L. et al., Micropor. Mesopor. Mater. 190, 109 (2014)CrossRef
Fang, J. et al., J. Phys. Chem. C 115, 14606 (2011)CrossRef
Ha, T.J. et al., J. Coll. Interf. Sci. 345, 120 (2010)CrossRef
Huang, C.L. et al., Mod. Phys. Lett. B 28, 1450019 (2014)CrossRef
Choi, S.G. et al., Ceram. Int. 34, 833 (2008)CrossRef
Ha, T.J. et al., Micropor. Mesopor. Mater. 163, 321 (2012)CrossRef
Huang, C.L. et al., Int. J. Thermophys. 34, 2371 (2013)CrossRef
Beck, J.S. et al., J. Am. Chem. Soc. 114, 10834 (1992)CrossRef
Kresge, C.T. et al., Nature 359, 710 (1992)CrossRef
Huang, X. et al., J. Coll. Interf. Sci. 359, 40 (2011)CrossRef
Ciuparu, D. et al., J. Phys. Chem. B 108, 503 (2004)CrossRef
Adhyapak, P.V. et al., Mater. Lett. 58, 1168 (2004)CrossRef
Huang, C.L. et al., Acta Phys. Sin. 60, 114401 (2011) [in Chinese]
Crowley, T.A. et al., Chem. Mater. 15, 3518 (2003)CrossRef
Huang, H.L. et al., Adv. Mater. Res. 47, 1125 (2008)CrossRef
Fuchs, K., Proc. Cambridge Phil. Soc. 34, 100 (1938)CrossRef
Dingle, R.B., Proc. Roy. Soc. London A 201, 545 (1950)CrossRef
Zhang, W. et al., Microelectron. Eng. 76, 146 (2004)CrossRef
Kumar, S., Vradis, G.C., J. Heat Transfer 116, 28 (1994)CrossRef
, X., Shen, W.Z., Chu, J.H., J. Appl. Phys. 91, 1542 (2002)CrossRef
Stojanovic, N. et al., Phys. Rev. B 82, 075418 (2010)CrossRef
Stewart, D., Norris, P.M., Microscale Therm. Eng. 4, 89 (2000)
Huang, C.L. et al., Physica B: Condens. Matter 438, 17 (2014)CrossRef
De Marzi, G. et al., J. Appl. Phys. 96, 3458 (2004)CrossRef
Ziman, J.M., Electrons and Phonons (Oxford University Press, New York, 1960), p. 463Google Scholar
Dames, C., Chen, G., J. Appl. Phys. 95, 682 (2003)CrossRef
Casimir, H.B.G., Physica 5, 495 (1938)CrossRef
Feng, B., Li, Z., Zhang, X., J. Appl. Phys. 105, 104315 (2009)CrossRef
Gu, M.X. et al., Phys. Rev. B 75, 125403 (2007)CrossRef
Peierls, R., Ann. Phys. NY 3, 1055 (1929)CrossRef
Mingo, N., Broido, D.A., Phys. Rev. Lett. 93, 246106 (2004)CrossRef
Progelhof, R.C., Throne, J.L., Ruetsch, R.R., Polym. Eng. Sci. 16, 615 (1976)CrossRef
Lu, X. et al., J. Non-Cryst. Solids 188, 226 (1995)CrossRef
Wan, B. et al., High Temp. – High Press. 40, 47 (2011)
Song, D.W. et al., Appl. Phys. Lett. 84, 1883 (2004)CrossRef