Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-23T14:38:43.214Z Has data issue: false hasContentIssue false

Titration of N and C atoms in flowing N2-CH4 post-discharge between 300 K and 850 K

Published online by Cambridge University Press:  11 May 2004

C. Jaoul*
Affiliation:
HEF R&D, rue Benoît Fourneyron, 42166 Andrézieux-Bouthéon Cedex, France Laboratoire de Science et Génie des Surfaces, UMR CNRS 7570, École des Mines, Parc de Saurupt, 54042 Nancy Cedex, France
T. Czerwiec
Affiliation:
Laboratoire de Science et Génie des Surfaces, UMR CNRS 7570, École des Mines, Parc de Saurupt, 54042 Nancy Cedex, France
T. Belmonte
Affiliation:
Laboratoire de Science et Génie des Surfaces, UMR CNRS 7570, École des Mines, Parc de Saurupt, 54042 Nancy Cedex, France
A. Ricard
Affiliation:
Centre de Physique des Plasmas et Applications de Toulouse, UMR CNRS 5002, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex, France
H. Michel
Affiliation:
Laboratoire de Science et Génie des Surfaces, UMR CNRS 7570, École des Mines, Parc de Saurupt, 54042 Nancy Cedex, France
Get access

Abstract

Flowing post-discharges resulting from surfatron microwave discharges in nitrogen and methane gas mixture with low amount of methane (less than 1%) are implemented for nitrocarburising treatment. Atomic nitrogen and atomic carbon densities are measured in post-discharge by combining optical emission spectroscopy and NO titration. The kinetic schema leading to N and C atoms densities is presented with a special attention paid to the effect of gas temperature on the kinetic constants. The influence of different discharge parameters such as methane percentage, total pressure, methane injection upstream or downstream the discharge and gas temperature are studied by these techniques. It is shown that, except at the lowest percentage used in this study (0.02%), methane introduction decreases nitrogen atoms densities. A maximum in carbon atoms density (1013 cm−3) is found for 0.05% of methane introduced in a nitrogen discharge at 2670 Pa. The corresponding nitrogen atoms density is two orders of magnitude higher (2–3 × 1015 cm−3). We present some arguments showing that gas expansion is the only effect that gas temperature has on nitrogen atoms densities. At present, it is not clear if such explanation is also applicable to the effect of gas temperature on carbon atoms densities.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

T. Belmonte, T. Czerwiec, H. Michel, Nitruration et traitements en post-décharge, Traitements des surfaces en phase vapeur (Lavoisier, 2002)
Bell, T., Sun, Y., Suhadi, A., Vacuum 59, 14 (2000) CrossRef
Pintassilgo, C.D., Loureiro, J., Cernogora, G., Touzeau, M., Plasma Sources Sci. Technol. 8, 463 (1999) CrossRef
Pintassilgo, C.D., Cernogora, G., Loureiro, J., Plasma Sources Sci. Technol. 10, 147 (2001) CrossRef
Legrand, J.-C., Diamy, A.-M., Hrach, R., Hrachova, V., Contrib. Plasma Phys. 37, 521 (1997) CrossRef
Legrand, J.-C., Diamy, A.-M., Hrach, R., Hrachova, V., Vacuum 48, 671 (1997) CrossRef
Legrand, J.-C., Diamy, A.-M., Hrach, R., Hrachova, V., Vacuum 50, 491 (1998) CrossRef
Legrand, J.-C., Diamy, A.-M., Hrach, R., Hrachova, V., Vacuum 52, 27 (1999) CrossRef
A. Ricard, J. High Temp. Chem. Proc., Colloque (Suppl. No. 3) 1 (1992)
Ricard, A., Malvos, H., Bordeleau, S., Hubert, J., J. Phys. D: Appl. Phys. 27, 504 (1994) CrossRef
Diamy, A.-M., Hochard, L., Legrand, J.-C., Ricard, A., Surf. Coat. Technol. 98, 1377 (1998) CrossRef
Kossyi, I.A., Kostinsky, A.Y., Matveyev, A.A., Silakov, V.P., Plasma Sources Sci. Technol. 1, 207 (1992) CrossRef
Gilmore, F.R., Laher, R.R., Espy, P.J., J. Phys. Chem. Ref. Data 21, 1005 (1992) CrossRef
Piper, L.G., J. Chem. Phys. 88, 6911 (1988) CrossRef
Ricard, A., Czerwiec, T., Belmonte, T., Bockel, S., Michel, H., Thin Solid Films 341, 1 (1999) CrossRef
Ricard, A., de Souza, A.R., J. Phys. III France 4, 2593 (1994) CrossRef
Pezé-Bourdarie, P., de Souza, A.R., Ricard, A., Le vide 54, 456 (1999)
J.L. Jauberteau, I. Jauberteau, M.J. Cinelli, J. Aubreton, New J. Phys. 4, 39.1 (2002)
Slack, M.W., Fishburne, E.S., J. Chem. Phys. 52, 5830 (1970) CrossRef
Kley, D., Washida, N., Becker, K.H., Groth, W., Chem. Phys. Lett. 15, 45 (1972) CrossRef
Washida, N., Kley, D., Becker, K.H., Groth, W., J. Chem. Phys. 63, 4230 (1975) CrossRef
Knowles, P.J., Werner, H.J., Hay, P.J., Cartwright, D.C., J. Chem. Phys. 89, 7334 (1988) CrossRef
Tereshchenko, E.N., Dodonova, N.Y., Opt. Spectrosc. 39, 435 (1975)
Lavendy, H., Gandara, G., Robbe, J.B., J. Mol. Spectrosc. 106, 395 (1984) CrossRef
Ricard, A., Nouvellon, C., Konstantinidis, S., Dauchot, J.P., Wautelet, M., Hecq, M., J. Vac. Sci. Technol. A 20, 1488 (2002) CrossRef
Czerwiec, T., Gavillet, J., Belmonte, T., Michel, H., Ricard, A., Surf. Coat. Technol. 98, 1411 (1998) CrossRef
Malvos, H., Michel, H., Ricard, A., J. Phys. D: Appl. Phys. 27, 1328 (1994) CrossRef
Partridge, H., Langhoff, S.R., Bauschlicher Jr, C.W.., D.W. Schwenke, J. Chem. Phys. 88, 3174 (1988) CrossRef
Callede, G., Deschamps, J., Godart, J.L., Ricard, A., J. Phys. D: Appl. Phys. 24, 909 (1991) CrossRef
Ricard, A., Deschamps, J., Godard, J.L., Falk, L., Michel, H., J. Mater. Sci. Eng. A 139, 9 (1991) CrossRef
Ricard, A., Trétreault, J., Hubert, J., J. Phys. B: At. Mol. Opt. Phys. 24, 1115 (1991) CrossRef