Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-21T04:39:58.490Z Has data issue: false hasContentIssue false

Direct Evidence of Ancient Symbiosis Using Trace Fossils

Published online by Cambridge University Press:  21 July 2017

Leif Tapanila*
Affiliation:
Department of Geosciences Idaho State University 921 S. 8th Ave. Pocatello, ID 83209-8072
Get access

Abstract

Symbiotic associations are a poorly studied aspect of the fossil record, owing largely to the taphonomic biases that inhibit direct observation that two organisms shared an intimate association in life. A symbiosis between an infesting animal and a skeleton-producing host can form a bioclaustration cavity that directly preserves the association and has a high preservation potential. Identification of ancient mutuals and parasites must reject the null hypothesis of commensalism by demonstrating that the symbiosis correlates with a positive or negative change in host fitness as compared to a non-symbiotic relative of the host taxon. Reviews of the Paleozoic record of marine symbionts show that the majority are hosted by colonial animals, especially corals and calcareous sponges. These hosts include structural forms that have moderate to high levels of integration and can support bioclaustrations between clonal units, mitigating the negative effects of symbionts, and perhaps facilitating the symbiosis.

The fossil record is biased toward recording long-lasting, widespread, equilibrated associations. By contrast, parasitisms that are especially negative to the host are expected to be fossilized rarely. The symbiotic associations that form bioclaustrations may also represent an endolithic adaptive strategy in response to biological antagonisms, such as predation and spatial competition. The Late Ordovician rise in symbiotic bioclaustrations joins burrows and borings as trace fossil examples of infaunalization strategies that accompany the Ordovician faunal radiation.

Type
Research Article
Copyright
Copyright © by the Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmadjian, V., and Paracer, S. 1986. Symbiosis: An Introduction to Biological Associations. University Press of England, London, 212 p.Google Scholar
Ausich, W. I., and Bottjer, D. J. 1982. Tiering in suspension-feeding communities on soft substrata throughout the Phanerozoic. Science, 216:173174.CrossRefGoogle ScholarPubMed
Baumiller, T. K. 1996. Boreholes in the Middle Devonian blastoid Heteroschisma and their implications for gastropod drilling. Palaeogeography, Palaeoclimatology, Palaeoecology, 123:343351.CrossRefGoogle Scholar
Baumiller, T. K., and Gahn, F. J. 2002. Fossil record of parasitism on marine invertebrates with special emphasis on the platyceratid–crinoid interaction, pp. 195209. In Kowalewski, M. and Kelley, P. H. (eds.), The Fossil Record of Predation. The Paleontological Society Papers, 8.Google Scholar
Boucot, A. J. 1990. Evolutionary Paleobiology of Behavior and Coevolution. Elsevier, Amsterdam, 725 p.Google Scholar
Brett, C. E., and Cottrell, J. F. 1982. Substrate specificity in the Devonian tabulate coral Pleurodictyum . Lethaia, 15:247262.CrossRefGoogle Scholar
Bromley, R. G. 1970. Borings as trace fossils and Entobia cretacea Portlock, as an example, pp. 4990. In Crimes, T. P. and Harper, J. C. (eds.), Trace Fossils. The Seel House Press, Liverpool.Google Scholar
Bromley, R.G., Beuck, L., and Taddei Ruggiero, E. 2008. Endolithic sponge versus terebratulid brachiopod, Pleistocene, Italy: accidental symbiosis, bioclaustration and deformity, p. 361368. In Wisshak, M. and Tapanila, L. (eds.), Current Developments in Bioerosion. Erlangen Earth Conference Series, Springer-Verlag, Berlin Heidelberg.CrossRefGoogle Scholar
Browne, R. G. 1965. Some Upper Cincinnatian (Ordovician) colonial corals of north-central Kentucky. Journal of Paleontology, 39:11771191.Google Scholar
Clarke, J. M. 1908. The beginnings of dependent life. New York State Museum Bulletin, 121:146196.Google Scholar
Clarke, J. M. 1921. Organic dependence and disease: their origin and significance. New York State Museum Bulletin, 221–222:1113.CrossRefGoogle Scholar
Coates, A. G., and Jackson, J. B. C. 1985. Morphological themes in the evolution of clonal and aclonal marine invertebrates, pp. 67106. In Jackson, J. B. C., Buss, L. W., and Cook, R. E. (eds.), Population Biology and Evolution of Clonal Organisms. Yale University Press, New Haven.Google Scholar
Coates, A. G., and Jackson, J. B. C. 1987. Clonal growth, algal symbiosis, and reef formation by corals. Paleobiology, 13:363378.CrossRefGoogle Scholar
Copper, P. 2002. Silurian and Devonian reefs: 80 million years of global greenhouse between two ice ages, pp. 181238. In Kiessling, W., Flügel, E., and Golonka, J. (eds.), Phanerozoic Reef Patterns, SEPM Special Publication 72.Google Scholar
Darrell, J. G., and Taylor, P. D. 1993. Macrosymbiosis in corals: a review of fossil and potentially fossilizable examples. Courier Forschungsinstitut Senckenberg, 164:185198.Google Scholar
Dai, C.-F., and Yang, H.-P. 1995. Distribution of Spirobranchus giganteus corniculatus (Hove) on the coral reefs of southern Taiwan. Zoological Studies, 34:117125.Google Scholar
Day, P. R. 1974. Genetics of Host-Parasite Interactions. W. H. Freeman, San Francisco, 238 p.Google Scholar
De Bary, A. 1879. Die Erscheinung der Symbiose. Verlag von Karl J. Trübner, Strassburg, 307 p.Google Scholar
Edinger, E. N., and Risk, M. J. 1994. Oligocene–Miocene extinction and geographic restriction of Caribbean corals: roles of turbidity, temperature, and nutrients. Palaios, 9:576598.CrossRefGoogle Scholar
Gahn, F. J., and Baumiller, T. K. 2001. Testing evolutionary escalation between crinoids and platyceratid gastropods and phylogenetic analysis of the Compsocrinina (Crinoidea: Monobathrida). Geological Society of America Abstracts with Programs, 33:247.Google Scholar
Gahn, F. J., and Baumiller, T. K. 2003. Infestation of Middle Devonian (Givetian) camerate crinoids by platyceratid gastropods and its implications for the nature of their biotic interaction. Lethaia, 36:7182.CrossRefGoogle Scholar
Gerth, H. 1952. Die von Sipunculiden bewohnten lebenden und jungtertiaren Korallen und der wurmformige Korper von Pleurodictyum . Palaontologische Zeitschrift, 25:119126.CrossRefGoogle Scholar
Goff, L. J. 1982. Symbiosis and parasitism: another viewpoint. Bioscience, 32:255256.CrossRefGoogle Scholar
Hertig, M., Taliaferro, W. H., and Schwartz, B. 1937. The terms ‘symbiosis,’ ‘symbiont’ and ‘symbiote’. Supplement to the report of the Twelfth Annual Meeting of the American Society of Parasitologists. Journal of Parasitology, 23:326329.Google Scholar
Hill, D. 1981. Rugosa and Tabulata, pp. F5–F429. In Teichert, C. (ed.), Treatise on Invertebrate Paleontology, Part F Coelenterata. Geologic Society of America and University of Kansas Press, Boulder, CO and Lawrence, KS.Google Scholar
Hiro, F. 1938. Studies on the animals inhabiting coral reefs. II. Cirripeds of the genera Creusia and Pyrgoma . Palao Tropical Biology Station Studies, 3:391417.Google Scholar
Hunte, W., Conlin, B. E., and Marsden, J. R. 1990a. Habitat selection in the tropical polychaete Spirobranchus giganteus: I. Distribution on corals. Marine Biology, 104:8792.CrossRefGoogle Scholar
Hunte, W., Marsden, J. R., and Conlin, B. E. 1990b. Habitat selection in the tropical polychaete Spirobranchus giganteus: III. Effects of coral species on body size and body proportions. Marine Biology, 104:101107.CrossRefGoogle Scholar
Jull, R. K. 1976. Review of some species of Favistina, Nyctopora, and Calapoecia (Ordovician corals from North America). Geological Magazine, 113:437467.CrossRefGoogle Scholar
Kershaw, S. 1980. Cavities and cryptic faunas beneath non-reef stromatoporoids. Lethaia, 13:327338.CrossRefGoogle Scholar
Kershaw, S. 1987. Stromatoporoid–coral intergrowths in a Silurian biostrome. Lethaia, 20:371380.Google Scholar
Kravtsov, A. V. 1966. Commensalism in colonial tetracorals. International Geology Review, 8:8183.CrossRefGoogle Scholar
Lee, D. -J., and Elias, R. J. 2004. Paleobiologic features of Trabeculites maculates (Tabulata, Late Ordovician, Southern Manitoba). Journal of Paleontology, 78:10561071.2.0.CO;2>CrossRefGoogle Scholar
Lewin, R. A. 1982. Symbiosis and parasitism: definitions and evaluations. Bioscience, 32:254259.CrossRefGoogle Scholar
Lewis, D. H. 1985. Symbiosis and mutualism: crisp concepts and soggy semantics, p. 2939. In Boucher, D. H. (ed.), The Biology of Mutualism: Evolution and Ecology. Oxford University Press, New York.Google Scholar
Light, W. J. 1970. A new spionid (Annelida: Polychaeta) from the Gulf of California. Bulletin of the Southern California Academy of Sciences, 69:7479.Google Scholar
Mángano, M. G., and Droser, M. L. 2004. The ichnologic record of the Ordovician radiation, pp. 369379. In Webby, B. D. and Droser, M. L. (eds.), The Great Ordovician Biodiversification Event. Columbia University Press, New York.CrossRefGoogle Scholar
Manten, A. A. 1971. Silurian Reefs of Gotland. Developments in Sedimentology, New York, 537 p.Google Scholar
Marsden, J. R., and Meeuwig, J. 1990. Preferences of planktotrophic larvae of the tropical serpulid Spirobranchus giganteus (Pallas) for exudates of corals from a Barbados reef. Journal of Experimental Biology and Ecology, 137:95104.CrossRefGoogle Scholar
Marsden, J.R., Conlin, B. E., and Hunte, W. 1990. Habitat selection in the tropical polychaete Spirobranchus giganteus: II. Larval preferences for corals. Marine Biology, 104:9399.CrossRefGoogle Scholar
Martin, D. and Britayev, T. A. 1998. Symbiotic polychaetes: review of known species. Oceanography and Marine Biology Annual Review, 36:217340.Google Scholar
Mistiaen, B. 1984. Comments on the caunopore tubes: stratigraphic distribution and microstructure. Palaeontographica Americana, 54: 501508.Google Scholar
Neumann, C. 2006a. Echinocorys, a model taxon for studying the evolution of symbiosis in deep time. Fifth International Bioerosion Workshop, Erlangen, Programme and Abstracts, p. 30.Google Scholar
Neumann, C. 2006b. Non-predatory borings in echinoid skeletons. Fifth International Bioerosion Workshop, Erlangen, Programme and Abstracts, p. 31.Google Scholar
Neumann, C., and Wisshak, M. 2006. A foraminiferal parasite on the sea urchin Echinocorys: ichnnological evidence from the Late Cretaceous (lower Maastrichtian, northern Germany). Ichnos, 13:185190.CrossRefGoogle Scholar
Nield, E. W. 1984. The boring of Silurian stromatoporoids – towards an understanding of larval behaviour in the Trypanites organism. Palaeogeography, Palaeoclimatology, Palaeoecology, 48:229243.CrossRefGoogle Scholar
Nishi, E., and Kikuchi, T. 1996. Preliminary observation of the tropical serpulid Spirobranchus giganteus corniculatus Pallus. Publications from the Amakusa Marine.Google Scholar
Nishi, E., and Nishihira, M. 1999. Use of annual density banding to estimate longevity of infauna of massive corals. Fisheries Science, 65:4856.CrossRefGoogle Scholar
Novack-Gottshall, P. M. 2008. Using simple body-size metrics to estimate fossil body volume: empirical validation using diverse Paleozoic invertebrates. Palaios, 23:163173.CrossRefGoogle Scholar
Oliver, W. A. Jr. 1983. Symbioses of Devonian rugose corals. Memoir of the Association of Australasian Palaeontologists, 1:261274.Google Scholar
Oekentorp, K. 1969. Kommensalismus bei Favositiden. Münstersche Forschungen zur Geologie und Paläontologie, 12:165217.Google Scholar
Palmer, T. J., and Wilson, M. A. 1988. Parasitism of Ordovician bryozoans and the origin of pseudoborings. Palaeontology, 31:939949.Google Scholar
Plusquellec, Y. 1968a. De quelques commensaux de Coelentérés paléozoïques. Annales de la société géologique du Nord, 88:163171.Google Scholar
Plusquellec, Y. 1968b. Commensaux des tabulés et stromatoporoïdes du Dévonien armoricain. Annales de la société géologique du Nord, 88:4756.Google Scholar
Randall, R. H., and Eldredge, L. G. 1976. Skeletal modification by a polychaete annelid in some scleractinian corals, pp. 453465. In Mackie, G. O. (ed.), Coelenterate Ecology and Behavior. Plenum Press, New York.CrossRefGoogle Scholar
Read, C. P. 1970. Parasitism and Symbiology. Ronald Press Company, New York, 316 p.Google Scholar
Reiswig, H. M. 1973. Population dynamics of Jamaican Demospongiae. Bulletin of Marine Science, 23:191226.Google Scholar
Risk, M. J., Heikoop, J. M., Edinger, E. N., and Erdmann, M. V. 2001. The assessment ‘toolbox’: community-based reef evaluation methods coupled with geochemical techniques to identify sources of stress. Bulletin of Marine Science, 69:443458.Google Scholar
Ross, A. and Newman, W. A. 1969. A coral eating barnacle. Pacific Science, 23:252256.Google Scholar
Ross, A. and Newman, W. A. 1973. Revision of the coral-inhabiting barnacles (Cirripedia: Balanidae). Transactions of the San Diego Society of Natural History, 17:137174.Google Scholar
Roughgarden, J. 1975. Evolution of marine symbiosis-a simple cost-benefit model. Ecology, 56:12011208.CrossRefGoogle Scholar
Roughgarden, J. 1983. The theory of coevolution, pp. 3364. In Futuyama, D. J. and Slatkin, M. (eds.), Coevolution. Sinauer Associates, Sunderland.Google Scholar
Schindewolf, O. H. 1958. Wurmer und Korallen als Synoken: Zur Kenntnis der Systeme Aspidosiphon/Heteropsammia und Hicetes/Pleurodictyum . Akademie der Wissenschaften und der literatur, Abhandlungen der Mathematisch-Naturwissenschaftlichen Klasse, 6:1327.Google Scholar
Scott, P. J. B. 1987. Associations between corals and macro-infaunal invertebrates in Jamaica, with a list of Caribbean and Atlantic coral associates. Bulletin of Marine Science, 40:271286.Google Scholar
Smith, R. 1984. Development and settling of Spirobranchus giganteus (Polychaeta; Serpulidae). Proceedings of the First International Polychaete Conference, Sydney, 461483.Google Scholar
Sokolov, B. S. 1948. Kommensalizm u Favositid. Izvestija Akademii Nauk SSSR, Biology Series, 1:101110.Google Scholar
Starr, M. P. 1975. A generalized scheme for classifying organismic associations. Symposia of the Society for Experimental Biology, 29:120.Google Scholar
Stel, J. H. 1976. The Paleozoic hard substrate trace fossils Helicosalpinx, Chaetosalpinx and Torquaysalpinx . Neues Jahrbuch für Geologie und Paläontologie Monatshefte, 12:726744.Google Scholar
Strathmann, R. R., Cameron, R. A., and Strathmann, M. 1984. Spirobranchus giganteus (Pallas) breaks a rule for suspension-feeders. Journal of Experimental Marine Biology and Ecology, 70:245249.CrossRefGoogle Scholar
Tapanila, L. 2002. A new endosymbiont in Late Ordovician tabulate corals from Anticosti Island, eastern Canada. Ichnos, 9:109116.CrossRefGoogle Scholar
Tapanila, L. 2004. The earliest Helicosalpinx from Canada and the global expansion of commensalism in Late Ordovician sarcinulid corals (Tabulata). Palaeogeography, Palaeoclimatology, Palaeoecology, 215:99110.CrossRefGoogle Scholar
Tapanila, L. 2005. Paleoecology and diversity of endosymbionts in Paleozoic marine invertebrates: trace fossil evidence. Lethaia, 38:8999.CrossRefGoogle Scholar
Tapanila, L. 2006. Macroborings and bioclaustrations in a Late Devonian reef above the Alamo impact breccia, Nevada, USA. Ichnos, 13:129134.CrossRefGoogle Scholar
Tapanila, L. 2008. The endolithic guild: an ecological framework for residential cavities in hard substrates, pp. 320. In Wisshak, M. and Tapanila, L. (eds.), Current Developments in Bioerosion. Erlangen Earth Conference Series, Springer-Verlag, Berlin Heidelberg.CrossRefGoogle Scholar
Tapanila, L., and Ebbestad, J. O. R. 2008. Benthic island community on the back of a snail: Silurian, Anticosti Island, Canada. Canadian Journal of Earth Sciences, 45:203211.CrossRefGoogle Scholar
Tapanila, L., and Ekdale, A. A. 2007. Early history of symbiosis in living substrates: trace-fossil evidence from the marine record, pp. 345355. In Miller Iii, W. (ed.), Trace Fossils: Concepts, Problems, Prospects. Elsevier, New York.CrossRefGoogle Scholar
Tapanila, L., and Holmer, L. E. 2006. Endosymbiosis in Ordovician–Silurian corals and stromatoporoids: a new lingulid and its trace from eastern Canada. Journal of Paleontology, 80:750759.CrossRefGoogle Scholar
Tapanila, L., Copper, P., and Edinger, E. 2004. Environmental and substrate control on Paleozoic bioerosion in corals and stromatoporoids, Anticosti Island, eastern Canada. Palaios, 19:292306.2.0.CO;2>CrossRefGoogle Scholar
Thompson, J. N. 1982. Interaction and Coevolution. John Wiley and Sons, New York, 179 p.CrossRefGoogle Scholar
Vermeij, G. J. 1987. Evolution and Escalation. Princeton University Press, Princeton, NJ, 527 p.CrossRefGoogle Scholar
Vinn, O., and Möttus, M. -A. 2008. The earliest endosymbiotic mineralized tubeworms from the Silurian of Podolia, Ukraine. Journal of Paleontology, 82:409414.CrossRefGoogle Scholar
Webby, B. D., Paris, F., Droser, M., and Percival, I. G. 2004. The Great Ordovician Biodiversification Event. Columbia University Press, New York, 484 p.CrossRefGoogle Scholar
Wielgus, J., Glassom, D., Ben-Shaprut, O., and Chadwick-Furman, N. E. 2002. An aberrant growth form of Red Sea corals caused by polychaete infestations. Coral Reefs, 21:315316.CrossRefGoogle Scholar
Wilson, M. A. 2007. Macroborings and the evolution of marine bioerosion, pp. 356367. In Miller Iii, W. (ed.), Trace Fossils: Concepts, Problems, Prospects. Elsevier, Amsterdam.CrossRefGoogle Scholar
Wilson, M. A., and Palmer, T. J. 2006. Patterns and processes in the Ordovician bioerosion revolution. Ichnos, 13:109112.CrossRefGoogle Scholar
Wisshak, M., and Neumann, C. 2006. A symbiotic association of a boring polychaete and an echinoid from the Late Cretaceous of Germany. Acta Palaeontologica Polonica, 51:589597.Google Scholar
Wulff, J. L. 1985. Clonal organisms and the evolution of mutualism, pp. 437466. In Jackson, J. B. C., Buss, L. W., and Cook, R. E. (eds.), Population Biology and Evolution of Clonal Organisms. Yale University Press, New Haven.Google Scholar
Zann, L. P. 1987. A review of macrosymbiosis in the coral reef ecosystem. International Journal for Parasitology, 17:399405.CrossRefGoogle Scholar
Zapalski, M. 2008. Parasitism versus commensalism: the case of tabulate endobionts. Palaeontology, 50:13751380.CrossRefGoogle Scholar