Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-20T21:53:04.694Z Has data issue: false hasContentIssue false

Phylogenetics and the Integration of Paleontology Within the Life Sciences

Published online by Cambridge University Press:  21 July 2017

Christopher A. Brochu
Affiliation:
Department of Geoscience, University of Iowa Iowa City, IA 52242
Colin D. Sumrall
Affiliation:
Department of Earth and Planetary Sciences, University of Tennessee Knoxville, TN 37996
Get access

Abstract

Paleontologists rely on information from modern organisms to understand fossils, but fossils can in turn be used to more completely understand the living. This is facilitated when the fossil record is understood from a phylogenetic context. Phylogenetic analyses allow the identification of robust calibration points for molecular dating analyses, and in the absence of phylogeny, “conflicts” between fossils and molecules may arise that are based not on the data, but on methodology or taxonomic philosophy. More importantly, phylogenetic analyses using fossils can overturn evolutionary scenarios based solely on living taxa, and they can direct researchers in more appropriate directions. This is necessary if paleontology is to be fully integrated with both the Earth and life sciences.

Type
Research Article
Copyright
Copyright © by the Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J. S. 2001. The phylogenetic trunk: maximal inclusion of taxa with missing data in an analysis of the Lepospondyli (Vertebrata, Tetrapoda). Systematic Biology, 50:170193.Google Scholar
Asher, R. J., Horovitz, I., and Sánchezvillagra, M. R. 2004. First combined cladistic analysis of marsupial mammal relationships. Molecular Phylogenetics and Evolution, 33:240250.Google Scholar
Baker, R. H., and Gatesy, J. 2002. Is morphology still relevant?, p. 163174. In DeSalle, R., Giribet, G., and Wheeler, W. (eds.), Molecular Systematics and Evolution: Theory and Practice. Birkhäuser Verlag, Basel.Google Scholar
Benton, M. J. 1993. Reptilia, p. 681715. In Benton, M. J. (ed.), The Fossil Record 2. Chapman and Hall, London.Google Scholar
Benton, M. J., and Ayala, F. J. 2003. Dating the Tree of Life. Science, 300:16981700.Google Scholar
Blair, J. E., and Hedges, S. B. 2005. Molecular phytogeny and divergence times of deuteronstome animals. Molecular Biology and Evolution, 22:22752284.Google Scholar
Brochu, C. A. 1997. Morphology, fossils, divergence timing, and the phylogenetic relationships of Gavialis . Systematic Biology, 46:479522.Google Scholar
Brochu, C. A. 1999. Phylogeny, systematics, and historical biogeography of Alligatoroidea. Society of Vertebrate Paleontology Memoir, 6:9100.Google Scholar
Brochu, C. A. 2003. Phylogenetic approaches toward crocodylian history. Annual Review of Earth and Planetary Sciences, 31:357397.Google Scholar
Brochu, C. A. 2004. Patterns of calibration age sensitivity with quartet dating methods. Journal of Paleontology, 78:730.Google Scholar
Brochu, C. A., and Densmore, L. D. 2001. Crocodile phylogenetics: a review of current progress, pp. 38. In Grigg, G., Seebacher, F. and Franklin, C. E. (eds.), Crocodilian Biology and Evolution, Surrey Beatty and Sons, Sydney.Google Scholar
Bromham, L. 2006. Molecular dates for the Cambrian Explosion: is the light at the end of the tunnel an oncoming train? Palaeontologia Electronica, 9:13.Google Scholar
Bromham, L., and Penny, D. 2003. The modern molecular clock. Nature Reviews Genetics, 4:219224.Google Scholar
Budd, G. E. 1993. A Cambrian gilled lobopod from Greenland. Nature, 364:709711.Google Scholar
Bull, J. J., Huelsenbeck, J. P., Cunningham, C. W., Swofford, D. L., and Waddell, P. J. 1993. Partitioning and combining data in phylogenetic systematics. Systematic Biology, 42:384397.Google Scholar
Buscalioni, A. D., Ortega, F., and Vasse, D. 1997. New crocodiles (Eusuchia: Alligatoroidea) from the Upper Cretaceous of southern Europe. Comptes Rendus de l'Academie des Sciences de Paris, Sciences de la Terre et des Planétes, 325:525530.Google Scholar
Chippindale, P. T., and Wiens, J. J. 1994. Weighting, partitioning, and combining characters in phylogenetic analysis. Systematic Biology, 43:278287.Google Scholar
Clarke, J. A., Ksepka, D. T., Stucchi, M., Urbina, M., Giannini, N., Bertelli, S., Narváez, Y., and Boyd, C. A. 2007. Paleogene equatorial penguins challenge the proposed relationship between biogeography, diversity, and Cenozoic climate change. Proceedings of the National Academy of Sciences of the U. S. A., 104:1154511550.Google Scholar
Clarke, J. A., Tambussi, C. P., Noriega, J. I., Erickson, G. M., and Ketcham, R. A. 2005. Definitive fossil evidence for the extant avian radiation in the Cretaceous. Nature, 433:305308.Google Scholar
Coates, M. I. 1995. Limb evolution: fish fins or tetrapod limbs - a simple twist of fate? Current Biology, 5:844848.Google Scholar
Coates, M. I., Jeffery, J. E., and Ruta, M. 2002. Fins to limbs: what the fossils say. Evolution and Development, 4:390401.Google Scholar
Cobbett, A., Wilkinson, M., and Wills, M. A. 2007. Fossils impact as hard as living taxa in parsimony analyses of morphology. Systematic Biology, 56:753766.Google Scholar
Cohn, M. J. 2002. Lamprey Hox genes and the origin of jaws. Nature, 416:386387.Google Scholar
Cohn, M. J., Lovejoy, C. O., Wolpert, L., and Coates, M. I. 2002. Branching, segmentation, and the metapterygial axis: pattern versus process in the vertebrate limb. BioEssays, 24:460465.Google Scholar
Cooper, A., and Penny, D. 1997. Mass survival of birds across the Cretaceous-Tertiary Boundary. Science, 275:11091113.Google Scholar
Danilov, I. G., and Parham, J. F. 2006. A redescription of ‘Plesiochelys’ tatsuensis from the Late Jurassic of China, with comments on the antiquity of the crown clade Cryptidira. Journal of Vertebrate Paleontology, 26:573580.Google Scholar
David, B., Lefebvre, B., Mooi, R. D., and Parsley, R. L. 2000. Are homalozoans echinoderms? An answer from the extraxial-axial theory. Paleobiology, 26:529555.Google Scholar
Delfino, M., Codrea, V., Folie, A., Dica, P., Godefroit, P., and Smith, T. 2008. A complete skull of Allodaposuchus precedens Nopcsa 1928 (Eusuchia) and a reassessment of the morphology of the taxon based on the Romanian remains. Journal of Vertebrate Paleontology, 28:111122.Google Scholar
Domning, D. P. 2001. The earliest known fully quadrupedal sirenian. Nature, 413:625627.Google Scholar
Donoghue, M. J., and Benton, M. J. 2007. Rocks and clocks: calibrating the tree of life using fossils and molecules. Trends in Ecology and Evolution, 22:424431.Google Scholar
Donoghue, M. J., Doyle, J. A., Gauthier, J., Kluge, A. G., and Rowe, T. 1989. The importance of fossils in phylogeny reconstruction. Annual Review of Ecology and Systematics, 20:431460.Google Scholar
Donoghue, P. C. J., and Purnell, M. A. 2005. Genome duplication, extinction and vertebrate evolution. Trends in Ecology and Evolution, 20:312319.Google Scholar
Donoghue, P. C. J., Sansom, I. J., and Downs, J. P. 2006. Early evolution of vertebrate skeletal tissues and cellular interactions, and the canalization of skeletal development. Journal of Experimental Biology, 306B:117.Google Scholar
Donoghue, P. R. C., Forey, P. L., and Aldridge, R. J. 2000. Conodont affinity and chordate phylogeny. Biological Reviews, 75:191251.Google Scholar
Doyle, J. A. 1998. Molecules, morphology, fossils, and the relationship of angiosperms and Gnetales. Molecular Phylogenetics and Evolution, 9:448462.Google Scholar
Drummond, A., Ho, S. Y. W., Phillips, M. J., and Rambaut, A. 2006. Relaxed phylogenetics and dating with confidence. PLoS Biology, 4: e88 doi:10.1371/journal.pbio.0040088.Google Scholar
Dyke, G. J., and Van Tuinen, M. 2004. The evolutionary radiation of modern birds (Neornithes): reconciling molecules, morphology and the fossil record. Zoological Journal of the Linnean Society, 141:153177.Google Scholar
Ericson, P. G. P. 1997. Systematic relationships of the palaeogene family Presbyornithidae (Aves: Anseriformes). Zoological Journal of the Linnean Society, 121:429483.Google Scholar
Feduccia, A. 1995. Explosive radiation in Tertiary birds and mammals. Science, 267:637638.Google Scholar
Felsenstein, J. 1978. Cases in which parsimony or compatibility methods will be positively misleading. Systematic Zoology, 27:401410.Google Scholar
Felsenstein, J. 2003. Inferring Phylogenies. Sinauer Associates, Sunderland MA, 580 p.Google Scholar
Foote, M., and Raup, D. M. 1996. Fossil preservation and the stratigraphic ranges of taxa. Paleobiology, 22:121140.Google Scholar
Forest, F., Savolainen, V., Chase, M. W., Lupia, R., Bruneau, A., and Crane, P. R. 2005. Teasing apart molecular- versus fossil-based error estimates when dating phylogenetic trees: a case study in the birch family (Betulaceae). Systematic Botany, 30:118133.Google Scholar
Friedman, M., Coates, M. I., and Anderson, P. 2007. The first discovery of a primitive coelacanth fin fills a major gap in the evolution of lobed fins and lims. Evolution and Development, 9:329337.Google Scholar
Gaffney, E. S. 1990. The comparative osteology of the Triassic turtle Proganochelys . Bulletin of the American Museum of Natural History, 194:1263.Google Scholar
Gaffney, E. S., Hutchison, J. H., Jenkins, F. A., and Meeker, L. J. 1987. Modern turtle origins: the oldest known cryptodire. Science, 237:289291.Google Scholar
Gandolfo, M. A., Nixon, K. C., and Crepet, W. L. 2008. Selection of fossils for calibration of molecular dating models. Annals of the Missouri Botanical Garden, 95:3442.Google Scholar
Gatesy, S. M., and Middleton, K. M. 1997. Bipedalism, flight, and the evolution of theropod locomotor diversity. Journal of Vertebrate Paleontology, 17:308329.Google Scholar
Gauthier, J., Kluge, A. G., and Rowe, T. 1988. Amniote phytogeny and the importance of fossils. Cladistics, 4:105209.Google Scholar
Gibb, G. C., Kardailsky, O., Kimball, R. T., Braun, E. L., and Penny, D. 2007. Mitochondrial genomes and avian phytogeny: complex characters and resolvability without explosive radiations. Molecular Biology and Evolution, 24:269280.Google Scholar
Glazko, G. V., Koonin, E. V., and Rogozin, I. B. 2005. Molecular dating: ape bones agree with chicken entrails. Trends in Genetics, 21:8992.Google Scholar
Grande, L. 1986. The use of paleontology in systematics and biogeography, and a time control refinement for historical biogeography. Paleobiology, 11:234243.Google Scholar
Graur, D., and Martin, W. 2004. Reading the entrails of chickens: molecular timescales of evolution and the illusion of precision. Trends in Genetics, 20:8086.Google Scholar
Griffith, R. W. 1987. Freshwater or marine origin of the vertebrates? Comparative Biochemistry and Physiology A, 87:523531.Google Scholar
Hadly, E. A. 2003. The interface of paleontology and mammalogy: past, present, and future. Journal of Mammalogy 84:347353.Google Scholar
Harrison, G. L., McLenachan, P. A., Phillips, M. J., Slack, K. E., Cooper, A., and Penny, D. 2004. Four new avian mitochondrial genomes help get to basic evolutionary questions in the Late Cretaceous. Molecular Biology and Evolution, 21:974983.Google Scholar
Hedges, S. B., and Sibley, C. G. 1994. Molecules vs. morphology in avian evolution: the case of the “pelicaniform” birds. Proceedings of the National Academy of Sciences of the U. S. A., 91:98619865.Google Scholar
Hermsen, E. J., and Hendricks, J. R. 2008. W(h)ither fossils? Studying morphological character evolution in the age of molecular sequences. Annals of the Missouri Botanical Garden, 95:72100.Google Scholar
Hillis, D. M. 1987. Molecular versus morphological approaches to systematics. Annual Review of Ecology and Systematics, 18:2342.Google Scholar
Hillis, D. M., and Wiens, J. J. 2000. Molecules versus morphology in systematics: conflicts, artefacts, and misconceptions, p. 119. In Wiens, J. J. (ed.), Phylogenetic Analysis of Morphological Data. Smithsonian Institution, Washington, DC.Google Scholar
Ho, S. Y. W. 2007. Calibrating molecular estimates of substitution rates and divergence times in birds. Journal of Avian Biology, 38:409414.Google Scholar
Ho, S. Y. W., Phillips, M. J., Cooper, A., and Drummond, A. J. 2005. Time dependency of molecular rate estimates and systematic overestimation of recent divergence times. Molecular Biology and Evolution, 22:15611568.Google Scholar
Holland, P. W., Garcia-Fernàndez, J., Williams, N. A., and Sidow, A. 1994. Gene duplications and the origins of vertebrate development. Development Suppl., 1994:125133.Google Scholar
Hope, S. 2002. The Mesozoic radiation of Neornithes, p. 339388. In Chiappe, L. and Witmer, L. M. (eds.), Mesozoic Birds: Above the Heads of Dinosaurs. University of California Press, Berkeley.Google Scholar
Hug, L. A., and Roger, A. J. 2007. The impact of fossils and taxon sampling on ancient molecular dating analyses. Molecular Biology and Evolution, 24:18891897.Google Scholar
Hugall, A. F., Foster, R., and Lee, M. S. Y. 2007. Calibration choice, rate smoothing, and the pattern of tetrapod diversification according to the long nuclear gene RAG-1. Systematic Biology, 56:543563.Google Scholar
Janvier, P. 1996. Early Vertebrates. Oxford University Press, New York.Google Scholar
Jenner, R. A. 2004a. Accepting partnership by submission? Morphological phylogenetics in a molecular millenium. Systematic Biology, 53:333342.Google Scholar
Jenner, R. A. 2004b. When molecules and morphology clash: reconciling conflicting phytogenies of the Metazoa by considering secondary character loss. Evolution and Development, 6:372378.Google Scholar
Joyce, W. G. 2007. Phylogenetic relationships of Mesozoic turtles. Bulletin of the Peabody Museum of Natural History, 48:3102.Google Scholar
Kay, R. F., and Cozzuol, M. A. 2006. New platyrrhine monkeys from the Solimoes Formation (Late Miocene, Acre State, Brazil). Journal of Human Evolution, 50:673686.Google Scholar
Kearney, M. 2002. Fragmentary taxa, missing data, and ambiguity: Mistaken assumptions and conclusions. Systematic Biology, 51.369381.Google Scholar
Kearney, M., and Clark, J. M. 2003. Problems due to missing data in phylogenetic analyses including fossils: a critical review. Journal of Vertebrate Paleontology, 23:263274.Google Scholar
Kluge, A. G. 1989. A concern for the evidence and a phylogenetic hypothesis of relationships among Epicrates (Boidae, Serpentes). Systematic Zoology, 38:725.Google Scholar
Kurochkin, E. N., Dyke, G. J., and Karhu, E. A. 2002. A new presbyornithid bird (Aves, Anseriformes) from the Late Cretaceous of southern Mongolia. American Museum Novitates, 3386:111.Google Scholar
Larson, A. 1994. The comparison of morphological and molecular data in phylogenetic systematics, p. 371390. In Schierwater, B., Streit, B., Wagner, G. P., and DeSalle, R. (eds.), Molecular Ecology and Evolution: Approaches and Applications. Birkhäuser Verlag, Basel.Google Scholar
Lecointre, G., and Deleporte, P. 2005. Total evidence requires exclusion of phylogenetically misleading data. Zoologica Scripta, 34:101117.Google Scholar
Lee, M. S. Y. 1999. Molecular clock calibrations and metazoan divergence dates. Journal of Molecular Evolution, 49:385391.Google Scholar
Lieberman, B. S. 2003. Paleobiogeography: the relevance of fossils to biogeography. Annual Review of Ecology, Evolution, and Systematics, 34:5169.Google Scholar
Livezey, B. C. 1997. A phylogenetic analysis of basal Anseriformes, the fossil Presbyornis, and the interordinal relationships of waterfowl. Zoological Journal of the Linnean Society, 121:361428.Google Scholar
Lowe, C. J., and Wray, G. A. 1997. Radical alterations in the roles of homeobox genes during echinoderm evolution. Nature, 389:718721.Google Scholar
Magallón, S. 2007. From fossils to molecules: phylogeny and the core eudicot floral groundplan in Hamamelidoideae (Hamamelidaceae, Saxifragales). Systematic Botany, 32:317347.Google Scholar
Magallón, S., and Sanderson, M. J. 2005. Angiosperm divergence times: the effect of genes, codon positions, and time constraints. Evolution, 59:16531670.Google Scholar
Manos, P. S., Soltis, P. S., Soltis, D. E., Manchester, S. R., Oh, S.-H., Bell, C. D., Dilcher, D. L., and Stone, D. E. 2007. Phylogeny of extant and fossil Juglandaceae infered from the integration of molecular and morphological data sets. Systematic Biology, 56:412430.Google Scholar
Marjanovic, D., and Laurin, M. 2007. Fossils, molecules, divergence times, and the origin of lissamphibians. Systematic Biology, 56:369388.Google Scholar
Marshall, C. R. 1990a. The fossil record and estimating divergence times between lineages: maximum divergence times and the importance of reliable phylogenies. Journal of Molecular Evolution, 30:400408.Google Scholar
Marshall, C. R. 1990b. Confidence intervals on stratigraphic ranges. Paleobiology, 16:110.Google Scholar
Martin, J. E., and Buffetaut, E. 2008. Crocodilus affuvelensis Matheron, 1869 from the Late Cretaceous of southern France: a reassessment. Zoological Journal of the Linnean Society, 152:567580.Google Scholar
Mason-Gamer, R. J., and Kellogg, E. A. 1996. Testing for phylogenetic conflict among molecular data sets in the tribe Triticeae (Gramineae). Systematic Biology, 45:524545.Google Scholar
Messenger, S. L., and McGuire, J. A. 1998. Morphology, molecules, and the phylogenetics of cetaceans. Systematic Biology, 47:90124.Google Scholar
Mooi, R. D., David, B., and Wray, G. A. 2005. Arrays in rays: terminal addition in echinoderms and its correlation with gene expression. Evolution and Development, 7:542555.Google Scholar
Müller, J., and Reisz, R. R. 2005. Four well-constrained calibration points from the vertebrate fossil record for molecular clock estimates. BioEssays, 27:10691075.Google Scholar
Neidert, A. H., Virupannavar, V., Hooker, G. W., and Langeland, J. A. 2001. Lamprey Dlx genes and early vertebrate evolution. Proceedings of the National Academy of Sciences of the U. S. A., 98:16651670.Google Scholar
Nixon, K. C. 2008. Paleobotany, evidence, and molecular dating: an example from the Nymphaeales. Annals of the Missouri Botanical Garden, 95:4350.Google Scholar
Norell, M., and Wheeler, W. C. 2003. Missing entry replacement data analysis: a replacement approach to dealing with missing data in paleontological and total evidence data sets. Journal of Vertebrate Paleontology, 23:275283.Google Scholar
O'Leary, M. A., and Gatesy, J. 2007. Impact of increased character sampling on the phytogeny of Cetartiodactyla (Mammalia): combined analysis including fossils. Cladistics, 23:146.Google Scholar
Olmo, E., Capriglione, T., and Odierna, G. 2002. Different genomic evolutionary rates in the various reptile lineages. Gene, 295:317321.Google Scholar
ösi, A., Clark, J. M., and Weishampel, D. B. 2007. First report on a new basal eusuchian crocodyliform with multicusped teeth from the Upper Cretaceous (Santonian) of Hungary. Neues Jahrbuch für Geologie und Palaontologie Abhandlungen, 243:169177.Google Scholar
Ostrom, J. H. 1974. Archaeopteryx and the origin of flight. Quarterly Review of Biology, 49:2747.Google Scholar
Panchen, A. L., and Smithson, T. R. 1987. Character diagnosis, fossils and the origin of tetrapods. Biological Reviews, 62:341436.Google Scholar
Parham, J. F., and Irmis, R. B. 2008. Caveats on the use of fossil calibrations for molecular dating: a comment on Near et al. American Naturalist, 171:132136.Google Scholar
Patterson, C. 1981. Significance of fossils in determining evolutionary relationships. Annual Review of Ecology and Systematics, 12:195223.Google Scholar
Pennington, R. T. 1997. Molecular and morphological data provide phylogenetic resolution at different hierarchical levels in Andira. Systematic Biology, 45:496515.Google Scholar
Pereira, S. L., and Baker, A. J. 2006. A mitogenomic timescale for birds detects variable phylogenetic rates of evolution and refutes the standard molecular clock. Molecular Biology and Evolution, 23:17311740.Google Scholar
Pérez-Losada, M., Høeg, J. T., and Crandall, K. A. 2004. Unraveling the evolutionary radiation of the thoracican barnacles using molecular and morphological evidence: a comparison of several divergence time estimation approaches. Systematic Biology, 53:244264.Google Scholar
Peterson, K. J., Arenas-Mena, C., and Davidson, E. H. 2000. The A/P axis in echinoderm ontogeny and evolution: evidence from fossils and molecules. Evolution and Development, 2:93101.Google Scholar
Polly, P. D. 2001. Paleontology and the comparative method: ancestral node reconstructions versus observed node values. American Naturalist, 157:596609.Google Scholar
Rabi, M. 2005. Alligatoroidea indet. from the Upper Cretaceous of Hungary (Csehbánya Formation). Kaupia, 14:93.Google Scholar
Reisz, R. R., and Müller, J. 2004. Molecular timescales and the fossil record: a paleontological perspective. Trends in Genetics, 20:237241.Google Scholar
Rieppel, O., Zaher, H., Tchernov, E., and Polcyn, M. J. 2003. The anatomy and relationships of Haasiophis terrasanctus, a fossil snake with well-developed hind limbs from the mid-Cretaceous of the Middle East. Journal of Paleontology, 77:536558.Google Scholar
Robinson-Rechavi, M., Boussau, B., and Laudet, V. 2004. Phylogenetic dating and characterization of gene duplications in vertebrates: the cartilaginous fish reference. Molecular Biology and Evolution, 21:580586.Google Scholar
Rokas, A., King, N., Finnerty, J., and Carroll, S. B. 2003. Conflicting phylogenetic signals at the base of the metazoan tree. Evolution and Development, 5:346359.Google Scholar
Roos, J., Aggarwal, R. K., and Janke, A. 2007. Extended mitogenomic phylogenetic analyses yield new insight into crocodylian evolution and their survival of the Cretaceous-Tertiary boundary. Molecular Phylogenetics and Evolution, 45:663673.Google Scholar
Rougier, G. W., De La Fuente, M. S., and Arcucci, A. B. 1995. Late Triassic turtles from South America. Science, 268:855858.Google Scholar
Rowe, T., Rich, T. H., Vickers-Rich, P., Springer, M. S., and Woodburne, M. O. 2008. The oldest platypus and its bearing on divergence timing of the platypus and echidna clades. Proceedings of the National Academy of Sciences of the U. S.A., 105:12381242.Google Scholar
Rutschmann, F. 2006. Molecular dating of phylogenetic trees: a brief review of current methods that estimate divergence times. Diversity and Distributions, 12:3548.Google Scholar
Salisbury, S. W., Molnar, R. E., Frey, E., and Willis, P. M. A. 2006. The origin of modern crocodyliforms: new evidence from the Cretaceous of Australia. Proceedings of the Royal Society of London B, 273:24392448.Google Scholar
Santini, F., and Tyler, J. C. 2004. The importance of even highly incomplete fossil taxa in the phylogenetic relationships of the Tetraodontiformes (Acanthomorpha: Pisces). Integrative and Comparative Biology, 44:349357.Google Scholar
Sawyer, G. T., Deak, V., Sarmiento, E., and Milner, A. C. 2007. The Last Human: A Guide to Twenty-Two Species of Extinct Humans. Yale University Press, New Haven, 256 p.Google Scholar
Schram, F. R., and Hof, C. H. J. 1998. Fossils and the interrelationships of major crustacean groups, p. 233302. In Edgecombe, G. D. (ed.), Arthropod Fossils and Phylogeny. Columbia University Press, New York.Google Scholar
Scotland, R. W., Olmstead, R. G., and Bennett, J. R. 2003. Phylogeny reconstruction: the role of morphology. Systematic Biology, 52:539548.Google Scholar
Shaffer, H. B., Clark, J. M., and Kraus, F. 1991. When molecules and morphology clash: a phylogenetic analysis of the North American ambystomatid salamanders (Caudata: Ambystomatidae). Systematic Zoology, 40:284303.Google Scholar
Shu, D.-G., Conway Morris, S., Han, J., Zhang, Z.-F., Yasui, K., Janvier, P., Chen, L., Zhang, X.-L., Li, Y., Liu, J.-N., and Liu, H.-Q. 2003. Head and backbone of the Early Cambrian vertebrate Haikouichthys . Nature, 421:546–529.Google Scholar
Shubin, N., Tabin, C., and Carroll, S. 1997. Fossils, genes and the evolution of animal limbs. Nature.Google Scholar
Sidor, C. A., and Hopson, J. A. 1998. Ghost lineages and “mammalness:” assessing the temporal pattern of character acquisition in the Synapsida. Paleobiology, 24:254273.Google Scholar
Smith, A. B. 1998. What does palaeontology contribute to systematics in a molecular world? Molecular Phylogenetics and Evolution, 9:437447.Google Scholar
Smith, A. B. 2006. The pre-radial history of echinoderms. Geological Journal, 40:255280.Google Scholar
Smith, A. B., and Peterson, K. J. 2002. Dating the time of origin of major clades: molecular clocks and the fossil record. Annual Review of Earth and Planetary Sciences, 30:6588.Google Scholar
Smith, A. B., Pisani, D., Mackenzie-Dodds, J. A., Stockley, B., Webster, B. L., and Littlewood, D. T. J. 2006. Testing the molecular clock: molecular and paleontological estimates of divergence times in the Echinoidea (Echinodermata). Molecular Biology and Evolution, 23:18321851.Google Scholar
Spatz, H. C., Rowe, N., Speck, T., and Daviero, V. 1998. Biomechanics of hollow stemmed sphenopsids: II. Catamites - to have or not to have secondary xylem. Review of Palaeobotany and Palynology, 102:6377.Google Scholar
Springer, M. S. 1995. Molecular clocks and the incompleteness of the fossil record. Journal of Molecular Evolution, 41:531538.Google Scholar
Springer, M. S., Teeling, E. C., Madsen, O., Stanhope, M. J., and De Jong, W. W. 2001. Integrated fossil and molecular data reconstruct bat echolocation. Proceedings of the National Academy of Sciences of the U. S. A., 98:62416246.Google Scholar
Springer, M. S., Burk-Herrick, A., Meredith, R., Eizirik, E., Teeling, E. C., O'Brien, S. J., and Murphy, W. J. 2007. The adequacy of morphology for reconstructing the early history of placental mammals. Systematic Biology, 56:673684.Google Scholar
Sprinkle, J. 1973. Morphology and evolution of blastozoan echinoderms. Museum of Comparative Zoology Special Publication, 283.Google Scholar
Stadler, P. F., Fried, C., Prohaska, S. J., Bailey, W. J., Misof, B. Y., Ruddle, F. H., and Wagner, G. P. 2004. Evidence for independent Hox gene duplications in the hagfish lineage: a PCRbased gene inventory of Eptatretus stoutii . Molecular Phylogenetics and Evolution, 32:686694.Google Scholar
Stockley, B., Smith, A. B., Littlewood, T., Lessios, H. A., and Mackenzie-Dodds, J. A. 2005. Phylogenetic relationships of spatangoid sea urchins (Echinoidea): taxon sampling density and congruence between morphological and molecular estimates. Zoologica Scripta, 34:447468.Google Scholar
Strauss, D., and Sadler, P. M. 1989. Classical confidence intervals and Bayesian probability estimates for ends of local taxon ranges. Mathematical Geology, 21:411427.Google Scholar
Sullivan, R. M., and Lucas, S. G. 2001. A new specimen of the rare alligatoroid Brachychampsa from the Kirtland Formation (Upper Campanian), San Juan Basin, New Mexico. Journal of Vertebrate Paleontology, 21:106A.Google Scholar
Sumrall, C. D. 1997. The role of fossils in the phylogenetic reconstruction of Echinodermata, p. 267288. In Waters, J. A. and Maples, C. G. (eds.), Geobiology of Echinoderms. Volume 3. The Paleontological Society, Pittsburgh.Google Scholar
Sumrall, C. D., Brochu, C. A., and Merck, J. W. 2001. Global lability, regional resolution, and majority-rule consensus bias. Paleobiology, 27:254261.Google Scholar
Sumrall, C. D., and Brochu, C. A. 2008. Viewing paleobiology through the lens of phylogeny, p. 165183. In Kelley, P. H. and Bambach, R. K., Bambach, R.K. (eds.), Evolution to Geobiology: Research Questions Driving Paleontology at the Start of a New Century. Paleontological Society Papers Volume 14.Google Scholar
Sumrall, C. D., and Wray, G. A. 2007. Ontogeny in the fossil record: diversification of body plans and the evolution of “aberrant” symmetry in Paleozoic echinoderms. Paleobiology, 33:149163.Google Scholar
Swofford, D. L. 1991. When are phytogeny estimates from molecular and morphological data incongruent?, p. 314340. In Miyamoto, M. M. and Cracraft, J. (eds.), Phylogenetic Analysis of DNA Sequences. Oxford University Press, New York.Google Scholar
Teeling, E. C., Springer, M. S., Madsen, O., Bates, P., O'Brien, S. J., and Murphy, W. J. 2005. A molecular phylogeny for bats illuminates biogeography and the fossil record. Science, 307(580584).Google Scholar
Thewissen, J. G. M., Williams, E. M., Roe, L. J., and Hussain, S. T. 2001. Skeletons of terrestrial cetaceans and the relationship of whales to artiodactyls. Nature, 413:227281.Google Scholar
Tinn, O., and Oakley, T. H. 2008. Erratic rates of molecular evolution and incongruence of fossil and molecular divergence time estimates in Ostracoda (Crustacea). Molecular Phylogenetics and Evolution, 48:157167.Google Scholar
Van Tuinen, M., Stidham, T. A., and Hadly, E. A. 2006. Tempo and mode of modern bird evolution observed with large-scale taxonomic sampling. Historical Biology, 18:205221.Google Scholar
Van Tuinen, M., and Hadly, E. A. 2004. Error in estimation of rate and time inferred from the early amniote fossil record and avian molecular clocks. Journal of Molecular Evolution, 59:267276.Google Scholar
Van Tuinen, M., Sibley, C. G., and Hedges, S. B. 2000. The early history of modern birds inferred from DNA sequences of nuclear and mitochondrial ribosomal genes. Molecular Biology and Evolution, 17:451457.Google Scholar
Waddell, P. J., Cao, Y., Hasegawa, M., and Mindell, D. P. 1999. Assessing the Cretaceous superordinal divergence times within birds and placental mammals by using whole mitochondrial protein sequences and an extended statistical framework. Systematic Biology, 48:119137.Google Scholar
Wagner, P. J. 2000. Exhaustion of morphologic character stastes among fossil taxa. Evolution, 54:365386.Google Scholar
Wahlberg, N., Braby, M. F., Brower, A. V. Z., De Jong, R., Lee, M.-M., Nylin, S., Pierce, N. E., Sperling, F. A. H., Vila, R., Warren, A. D., and Zakharov, E. V. 2005. Synergistic effects of combining morphological and molecular data in resolving the phylogeny of butterflies and skippers. Proceedings of the Royal Society of London B, 272:15771586.Google Scholar
Welch, J. J., and Bromham, L. 2005. Molecular dating when rates vary. Trends in Ecology and Evolution, 20:320327.Google Scholar
Welch, J. J., Fontanillas, E., and Bromham, L. 2005. Molecular dates for the “Cambrian Explosion:” the influence of prior assumptions. Systematic Biology, 54:672678.Google Scholar
Wiens, J. J. 2003. Missing data, incomplete taxa, and phylogenetic accuracy. Systematic Biology, 52:528538.Google Scholar
Wiens, J. J. 2004. The role of morphological data in phylogeny reconstruction: a reply to Scotland et al. (2003). Systematic Biology, 53.Google Scholar
Wiens, J. J., and Hollingsworth, B. D. 2000. War of the iguanas: Conflicting molecular and morphological phytogenies and long-branch attraction in iguanid lizards. Systematic Biology, 49:143159.Google Scholar
Williamson, T. E. 1996. ?Brachychampsa sealeyi, sp. nov., (Crocodylia, Alligatoroidea) from the Upper Cretaceous (lower Campanian) Menefee Formation, northwestern New Mexico. Journal of Vertebrate Paleontology, 16:421431.Google Scholar
Wilkinson, M. 1994. Common cladistic information and its consensus representation: reduced Adams and reduced cladistic consensus trees and profiles. Systematic Biology, 43:343368.Google Scholar
Wilkinson, M. 1995. Coping with abundant missing entries in phylogenetic inference using parsimony. Systematic Biology, 44:501514.Google Scholar
Wilkinson, M. 2003. Missing entries and multiple trees: instability, relationships, and support in parsimony analysis. Journal of Vertebrate Paleontology, 23:311323.Google Scholar
Wilkinson, M., and Benton, M. J. 1995. Missing data and rhynchosaur phylogeny. Historical Biology, 10:137150.Google Scholar
Wu, X.-C., Brinkman, D. B., and Russell, A. P. 1996. A new alligator from the Upper Cretaceous of Canada and the relationships of early eusuchians. Palaeontology, 39:351375.Google Scholar
Wu, X.-C., Russell, A. P., and Brinkman, D. B. 2001. A review of Leidyosuchus canadensis Lambe, 1907 (Archosauria: Crocodylia) and an assessment of cranial variation based upon new material. Canadian Journal of Earth Sciences, 38:16651687.Google Scholar
Yang, Z., and Yoder, A. D. 2003. Comparison of likelihood and Bayesian methods for estimating divergence times using multiple gene loci and calibration points, with application to a radiation of cute-looking mouse lemur species. Systematic Biology, 52:705716.Google Scholar