Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-11T12:48:13.292Z Has data issue: false hasContentIssue false

Biogeographical Barriers

Published online by Cambridge University Press:  21 July 2017

Carl W. Stock*
Affiliation:
Department of Geological Sciences, University of Alabama, Tuscaloosa, Alabama 35487-0338 USA
Get access

Abstract

Biogeographical barriers serve to limit the geographic range of a species, be it in the ocean or on land. Land barriers to marine migration and marine barriers to land migration are the most easily determined from the geological record; however, temperature can be invoked in both situations. Physiographic features such as mountain ranges can restrict land organisms, and shallow marine organisms may not be able to cross oceans of great depth. Barriers can allow the passage of organisms by three means, in order of greater restriction to migration: 1) corridors; 2) filters; and 3) sweepstakes routes. Examples from the fossil record and recent are given of barriers to marine and continental organisms and their means of overcoming those barriers.

Type
Research Article
Copyright
Copyright © 2005 by the Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

ANONYMOUS. 1985. USSR Energy Atlas. Central Intelligence Agency, Washington, D.C., 79 p.Google Scholar
Bauer, K., and Schreiber, A. 1997. Double invasion of Tertiary island South America by ancestral New World monkeys? Biological Journal of the Linnean Society, 60:120.CrossRefGoogle Scholar
Benton, M. J. 2005. Vertebrate Palaeontology, 3rd ed. Blackwell, Maiden, Massachusetts, 455 p.Google Scholar
Bergquist, P. R. 1978. Sponges. University of California, Berkeley, 268 p.Google Scholar
Blodgett, R. B., Rohr, D. M., and Boucot, A. J. 1988. Lower Devonian gastropod biogeography of the Western hemisphere, p. 281294. In McMillan, N. J., Embry, A. F., and Glass, D. J., (eds.), Devonian of the World. Proceedings of the Second International Symposium on the Devonian system, Vol. III. Canadian Society of Petroleum Geologists Memoir, 14.Google Scholar
Blodgett, R. B., Rohr, D. M., and Boucot, A. J. 1990. Early and Middle Devonian gastropod biogeography, p. 277284. In McKerrow, W. S. and Scotese, C. R., (eds.), Palaeozoic Palaeogeography and Biogeography. Geological Society Memoir, 12.Google Scholar
Boucot, A. J. 1975. Evolution and Extinction Rate Controls. Elsevier, Amsterdam, 427 p.Google Scholar
Boucot, A. J., Johnson, J. G., and Talent, J. A. 1969. Early Devonian brachiopod zoogeography. Geological Society of America Special Paper 119, 113 p.Google Scholar
Cecca, F. 2002. Palaeobiogeography of Marine Fossil Invertebrates-Concepts and Methods. Taylor & Francis, London.Google Scholar
Colbert, E. H., Morales, M., and Minkoff, E. C. 2001. Colbert's Evolution of the Vertebrates: A History of the Backboned Animals through Time, 5th ed. Wiley-Liss, New York, 560 p.Google Scholar
Condie, K. C., and Sloan, R. E. 1998. Origin and Evolution of Earth: Principles of Historical Geology. Prentice-Hall, Upper Saddle River, New Jersey, 498 p.Google Scholar
Cookenboo, H. O., Orchard, M. J., and Daoud, D. K. 1998. Remnants of Paleozoic cover on the Archean Canadian Shield: Limestone xenoliths from kimberlite in the central Slave craton. Geology, 26:391394.2.3.CO;2>CrossRefGoogle Scholar
Copper, P. 2002. Silurian and Devonian reefs: 80 million years of global greenhouse between two ice ages, p. 181238. In Kiessling, W., Flügel, E., and Golonka, J., (eds.), Phanerozoic Reef Patterns. SEPM Special Publication, 72.Google Scholar
Cox, C. B., and Moore, P. D. 2000. Biogeography: An Ecological and Evolutionary Approach, 6th ed. Blackwell, Oxford, 298 p.Google Scholar
De Mora, S. J., and Turner, T. 2004. The Caspian Sea: A microcosm for environmental science and international cooperation. Marine Pollution Bulletin, 48:2629.CrossRefGoogle ScholarPubMed
Fagerstrom, J. A. 1982. Stromatoporoids of the Detroit River Group and adjacent rocks (Devonian) in the vicinity of the Michigan Basin. Geological Survey of Canada Bulletin 339, 81 p.Google Scholar
Hallam, A. 1977. Biogeographic evidence bearing on the creation of Atlantic seaways in the Jurassic, p. 2334. In West, R. M., (ed.), Paleontology and Plate Tectonics. Milwaukee Public Museum Special Publication in Biology and Geology, 2.Google Scholar
Joachimski, M. M., Van Geldern, R., Breisig, S., Buggisch, W., and Day, J. E. 2004. Oxygen isotope evolution of biotic calcite and apatite during the Middle and Late Devonian. International Journal of Earth Science (Geologische Rundschau), 93:542553.Google Scholar
Johnson, J. G. 1970. Taghanic Onlap and the end of North American Devonian provinciality. Geological Society of America Bulletin, 81:20772093.CrossRefGoogle Scholar
Johnson, J. G., and Boucot, A. J. 1973. Devonian brachiopods, p. 8996. In Hallam, A., (ed.), Atlas of Palaeobiogeography. Elsevier, Amsterdam.Google Scholar
Johnson, J. G., Klapper, G., and Sandberg, C. A. 1985. Devonian eustatic fluctuations in Euramerica. Geological Society of America Bulletin, 96:567587.2.0.CO;2>CrossRefGoogle Scholar
Johnson, J. G., Sandberg, C. A., and Poole, F. G. 1991. Devonian lithofacies of western United States, p. 83105. In Cooper, J. D. and Stevens, C. H., (eds.), Paleozoic Paleogeography of the Western United States-II. Pacific Section SEPM, Vol. 67.Google Scholar
Kauffman, E. G. 1973. Cretaceous Bivalvia, p. 353384. In Hallam, A., (ed.), Atlas of Palaeobiogeography. Elsevier, Amsterdam.Google Scholar
Kozur, H. 1973. Faunenprovinzen in der Trias und ihre Bedeutung für die Klärung der Paläogeographie. Geologische und Paläontologische Mittelungen Innsbruck, 3(8):141.Google Scholar
Kristan-Tollmann, E., and Tollman, A. 1982. Die Entwicklung der Tethystrias und Herkunft ihrer Fauna. Geologische Rundschau, 71:9871019.CrossRefGoogle Scholar
Laporte, L. F. 1969. Recognition of a transgressive carbonate sequence within an epeiric sea: Helderberg Group (Lower Devonian) of New York State, p. 98119. In Friedman, G. M., (ed.), Depositional Environments in Carbonate Rocks. Society of Economic Paleontologists and Mineralogists Special Publication, 14.Google Scholar
Lieberman, B. S. 2000. Paleobiogeography: Using Fossils to Study Global Change, Plate Tectonics, and Evolution. Kluwer Academic/Plenum Publishers, New York, 208 p.Google Scholar
Marshall, L. G., Webb, S. D., Sepkoski, J. J. Jr., and Raup, D. M. 1982. Mammalian evolution and the Great American Interchange. Science, 215:13511357.Google Scholar
McCracken, A. D., Armstrong, D. K., and Bolton, T. E. 2000. Conodonts and corals in kimberlite xenoliths confirm a Devonian seaway in central Ontario and Quebec. Canadian Journal of Earth Sciences, 37:16511663.CrossRefGoogle Scholar
Miller, M. M., and Wright, J. E. 1987. Paleogeographic implications of Permian Tethyan corals from the Klamath Mountains, California. Geology, 15:266269.Google Scholar
Morrow, D. W., and Cook, D. G. 1987. The Prairie Creek Embayment and lower Paleozoic strata of the southern Mackenzie Mountains. Geological Survey of Canada Memoir 412, 195 p.CrossRefGoogle Scholar
Nalivkin, D. V. 1973. Geology of the U.S.S.R. University of Toronto Press, Toronto, 885 p.Google Scholar
Newton, C. R. 1988. Significance of “Tethyan” fossils in the American Cordillera. Science, 242:385391.CrossRefGoogle ScholarPubMed
Norris, A. W. 1996. Report on thirty-three lots of Silurian and Devonian fossils from section 67 in Vendom River area (NYS-49-D), sections 63, 62 and 61 in Makinson Inlet area (NTS-49-D), and Humphries River section (NTS-49-E), southern Ellesmere Island, District of Franklin; submitted by Dr. T. DeFreitas [sic], February, 1996. Geological Survey of Canada Paleontological Report 3-AWN-1996, 14 p.Google Scholar
Oliver, W. A. Jr. 1977. Biogeography of Late Silurian and Devonian rugose corals. Palaeogeography, Palaeoclimatology, Palaeoecology, 22:85135.Google Scholar
Oliver, W. A. Jr., and Pedder, A. E. H. 1989. Origins, migrations, and extinctions of Devonian Rugosa on the North American Plate. Association of Australasian Palaeontologists Memoir, 8:231237.Google Scholar
Paull, R. K. 1988. Distribution pattern of Lower Triassic (Scythian) conodonts in the western United States: Documentation of the Pakistan connection. Palaios, 3:598605.CrossRefGoogle Scholar
Pedder, A. E. H., and Murphy, M. A. 2004. Emsian (Lower Devonian) Rugosa of Nevada: Revision of systematics and stratigraphic ranges, and reassessment of faunal provincialism. Journal of Paleontology, 78:838865.Google Scholar
Prosh, E. C., and Stearn, C. W. 1993. Early Devonian age of the Detroit River Group, inferred from Arctic stromatoporoids. Canadian Journal of Earth Sciences, 30:24652474.CrossRefGoogle Scholar
Sandberg, C. A., Morrow, J. R., and Ziegler, W. 2002. Late Devonian sea-level changes, catastrophic events, and mass extinctions, p. 473487. In Koeberl, C., and MacLeod, K. G., (eds.), Catastrophic Events and Mass Extinctions: Impacts and Beyond. Geological Society of America Special Paper, 356.Google Scholar
Scrutton, C. T. 1997. The Palaeozoic corals, I: Origins and relationships. Proceedings of the Yorkshire Geological Society, 52:157.Google Scholar
Sheldon, B. C. 2002. Adaptive maternal effects and rapid population differentiation. Trends in Ecology and Evolution, 17:247249.Google Scholar
Sloss, L. L. 1963. Sequences in the cratonic interior of North America. Geological Society of America Bulletin, 74:93114.Google Scholar
Stanley, G. D. Jr. 1994. Late Paleozoic and early Mesozoic reef-building organisms and paleogeography: The Tethyan-North American connection. Courier Forschungsinstitut Senckenberg, 172:6975.Google Scholar
Stearn, C. W. 1990. Stromatoporoids from allochthonous reef facies of the Stuart Bay Formation (Lower Devonian), Bathurst Island, arctic Canada. Journal of Paleontology, 64:493510.Google Scholar
Stearn, C. W., Carroll, R. L., and Clark, T. H. 1979. Geological Evolution of North America, 3rd ed. John Wiley & Sons, New York, 566 p.Google Scholar
Stock, C. W. 1979. Upper Silurian (Pridoli) Stromatoporoidea of New York. Bulletins of American Paleontology, 76:289389.Google Scholar
Stock, C. W. 1988. Lower Devonian (Gedinnian) Stromatoporoidea of New York: Redescription of the type specimens of Girty (1895). Journal of Paleontology, 62:821.Google Scholar
Stock, C. W. 1990. Biogeography of the Devonian stromatoporoids, p. 257265. In McKerrow, W. S. and Scotese, C. R., (eds.), Palaeozoic Palaeogeography and Biogeography. Geological Society Memoir, 12.Google Scholar
Stock, C. W. 1991. Lower Devonian (Lochkovian) Stromatoporoidea from the Manlius Formation of New York. Journal of Paleontology, 65:897911.CrossRefGoogle Scholar
Stock, C. W. 1997. Lower Devonian (Lochkovian) Stromatoporoidea from the Coeymans Formation of central New York. Journal of Paleontology, 71:539553.Google Scholar
Stock, C. W. in press. Devonian stromatoporoid originations, extinctions, and paleobiogeography: How they relate to the Frasnian-Famennian extinction, p. xxxx. In Over, D. J., Morrow, J. R., and Wignall, P. B., (eds.), Understanding Late Devonian and Permian-Triassic Biotic and Climatic Events: Towards an Integrated Approach. Developments in Palaeontology and Stratigraphy, Elsevier, Amsterdam.Google Scholar
Stock, C. W., and Burry-Stock, J. A. 2001. A multivariate analysis of two contemporaneous species of the stromatoporoid Habrostroma from the Lower Devonian of New York, USA. Bulletin of the Tohoku University Museum, 1:279284.Google Scholar
Stock, C. W., and Holmes, A. E. 1986. Upper Silurian/Lower Devonian Stromatoporoidea from the Keyser Formation at Mustoe, Highland County, west-central Virginia. Journal of Paleontology, 60:555580.Google Scholar
Tozer, E. T. 1982. Marine Triassic faunas of North America: Their significance for assessing plate and terrane movements. Geologische Rundschau, 71:10771104.Google Scholar
Webb, S. D. 1991. Ecogeography and the Great American Interchange. Paleobiology, 17:266280.Google Scholar
Webby, B. D. 1992a. Global biogeography of Ordovician corals and stromatoporoids, p. 261276. In Webby, B. D. and Laurie, J. R., (eds.), Global Perspectives on Ordovician Geology. A. A. Balkema, Rotterdam.Google Scholar
Webby, B. D. 1992b. Ordovician island biotas: New South Wales record and global implications. Royal Society of New South Wales Journal and Proceedings, 125:5177.CrossRefGoogle Scholar
Wood, A. E. 1985. Northern waif primates and rodents, p. 267282. In Stehli, F. G. and Webb, S. D., (eds.), The Great American Biotic Interchange. Plenum Press, New York.Google Scholar